Система уравнений. Подробная теория с примерами (2020). Решение простых линейных уравнений Виды уравнений и способы их решения

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Линейное уравнение — это алгебраическое уравнение. В этом уравнении полная степень составляющих его многочленов равна единице.

Линейные уравнения представляют в таком виде:

В общей форме: a 1 x 1 + a 2 x 2 + … + a n x n + b = 0

В канонической форме: a 1 x 1 + a 2 x 2 + … + a n x n = b.

Линейное уравнение с одной переменной.

Линейное уравнение с 1-ой переменной приводится к виду:

ax + b =0.

Например:

2х + 7 = 0 . Где а=2, b=7;

0,1х - 2,3 = 0. Где а=0,1, b=-2,3;

12х + 1/2 = 0. Где а=12, b=1/2.

Число корней зависимо от a и b :

Когда a = b =0 , значит, у уравнения есть неограниченное число решений, так как .

Когда a =0 , b ≠ 0 , значит, у уравнения нет корней, так как .

Когда a ≠ 0 , значит, у уравнения есть только один корень .

Линейное уравнение с двумя переменными.

Уравнением с переменной x является равенство типа A(x)=B(x) , где A(x) и B(x) — выражения от x . При подстановке множества T значений x в уравнение получаем истинное числовое равенство, которое называется множеством истинности этого уравнения либо решение заданного уравнения , а все такие значения переменной — корни уравнения.

Линейные уравнения 2-х переменных представляют в таком виде:

В общей форме: ax + by + c = 0,

В канонической форме: ax + by = -c,

В форме линейной функции: y = kx + m , где .

Решением либо корнями этого уравнения является такая пара значений переменных (x;y) , которая превращает его в тождество . Этих решений (корней) у линейного уравнения с 2-мя переменными неограниченное количество. Геометрической моделью (графиком) данного уравнения есть прямая y=kx+m .

Если в уравнении есть икс в квадрате, то такое уравнение называется

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение – это математическое выражение, являющееся равенством, содержащее неизвестное. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например: соотношение вида (x – 1)2 = (x – 1)(x – 1) выполняется при всех значениях x.

Если уравнение, содержащее неизвестное x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17.

В разделе математики, который называется теорией уравнений, основным предметом изучения являются методы решения уравнений. В школьном курсе алгебры уравнениям уделяется большое внимание.

История изучения уравнений насчитывает много веков. Самыми известными математиками, внесшими вклад в развитие теории уравнений, были:

Архимед (около 287–212 до н. э.) - древнегреческий ученый, математик и механик. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Франсуа Виет жил в XVI в. Он внес большой вклад в изучение различных проблем математики. В частности, он ввел буквенные обозначения коэффициентов уравнения и установил связь между корнями квадратного уравнения.

Леонард Эйлер (1707 – 1783) - математик, механик, физик и астроном. Автор св. 800 работ по математическаму анализу, дифференциальных уравнений, геометрии, теории чисел, приближённым вычислениям, небесной механике, математике, оптике, баллистике, кораблестроению, теории музыки, и т. д. Оказал значительное влияниена развитие науки. Вывел формулы (Формулы Эйлера), выражающие тригонометрические функции переменного х через показательную функцию.

Лагранж Жозеф Луи (1736 - 1813 гг.), французский математик и механик. Ему принадлежат выдающиеся исследования, среди них исследования по алгебре (симметрической функции корней уравнения, по дифференциальным уравнениям (теория особых решений, метод вариации постоянных).

Ж. Лагранж и А. Вандермонд - французские математики. В 1771 г. впервые применили способ решения систем уравнений (способ подстановки).

Гаусс Карл Фридрих (1777 -1855 гг.) - немецкий математик. Написал книгу, в которой излагается теория уравнений деления круга (т. е. уравнений xn - 1 = 0), которая во многом была прообразом Галуа теории. Помимо общих методов решения этих уравнений, установил связь между ними и построением правильных многоугольников. Он, впервые после древнегреческих учёных, сделал значительный шаг вперёд в этом вопросе, а именно: нашёл все те значения n, для которых правильный n-угольник можно построить циркулем и линейкой. Изучал способ сложения. Сделал вывод, что системы уравнений можно между собой складывать, делить, и умножать.

О. И. Сомов – обогатил разные части математики важными и многочисленными трудами, среди них теория определённых алгебраических уравнений высших степеней.

Галуа Эварист (1811-1832 гг.), - французский математик. Основной его заслугой является формулировка комплекса идей, к которым он пришёл в связи с продолжением исследований о разрешимости алгебраических уравнений, начатых Ж. Лагранжем, Н. Абелем и др. , создал теорию алгебраических уравнений высших степеней с одним неизвестным.

А. В. Погорелов (1919 – 1981 гг.) - В его творчестве связаны геометрические методы с аналитическими методами теории дифференциальных уравнений с частными производными. Его труды оказали существенное влияние также на теорию нелинейных дифференциальных уравнений.

П. Руффини - итальянский математик. Посвятил ряд работ, доказательству неразрешимости уравнения 5-й степени, систематически использует замкнутость множества подстановок.

Не смотря на то, что ученые давно изучают уравнения, науке не известно, как и когда у людей возникла необходимость использовать уравнения. Известно только, что задачи, приводящие к решению простейших уравнений, люди решали с того времени, как стали людьми. Еще 3 - 4 тысячи лет до н. э. египтяне и вавилоняне умели решать уравнения. Правило решения этих уравнений, совпадает с современным, но неизвестно, как они до этого дошли.

В Древнем Египте и Вавилоне использовался метод ложного положения. Уравнение первой степени с одним неизвестным можно привести всегда к виду ах + Ь = с, в котором а, Ь, с целые числа. По правилам арифметических действий ах = с - b,

Если Ь > с, то с b число отрицательное. Отрицательные числа были египтянам и многим другим более поздним народам неизвестны (равноправно с положительными числами их стали употреблять в математике только в семнадцатом веке). Для решения задач, которые мы теперь решаем уравнениями первой степени, был изобретен метод ложного положения. В папирусе Ахмеса 15 задач решается этим методом. Египтяне имели особый знак для обозначения неизвестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или «неизвестное количество» единиц). Теперь читают немного менее неточно: «ага». Способ решения, примененный Ахмесом, называется методом одного ложного положения. При помощи этого метода решаются уравнения вида ах = b. Этот способ заключается в том, что каждую часть уравнения делят на а. Его применяли как египтяне, так и вавилоняне. У разных народов применялся метод двух ложных положений. Арабами этот метод был механизирован и получен ту форму, в которой он перешел в учебники европейских народов, в том числе в «Арифметику» Магницкого. Магницкий называет способ решения «фальшивым правилом» и пишет в части своей книги, излагающей этот метод:

Зело бо хитра есть сия часть, Яко можеши ею все класть. Не токмо что есть во гражданстве, Но и высших наук в пространстве, Яже числятся в сфере неба, Якоже мудрым есть потреба.

Содержание стихов Магницкого можно вкратце передать так: эта часть арифметики весьма хитрая. При помощи ее можно вычислить не только то, что понадобится в житейской практике, но она решает и вопросы «высшие», которые встают перед «мудрыми». Магницкий пользуется «фальшивым правилом» в форме, какую ему придали арабы, называя его «арифметикой двух ошибок» или «методой весов». Индийские математики часто давали задачи в стихах. Задача о лотосе:

Над озером тихим, с полмеры над водой, Был виден лотоса цвет. Он рос одиноко, и ветер волной Нагнул его в сторону, и уж нет

Цветка над водой. Нашёл его глаз рыбака В двух мерах от места, где рос. Сколько озера здесь вода глубока? Тебе предложу я вопрос.

Виды уравнений

Линейные уравнения

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а (ах + b; ах = - b; х = - b: а.).

Например: решить линейное уравнение: 4х + 12 = 0.

Решение: Т. к а = 4, а b = 12, то х = - 12: 4; х = - 3.

Проверка: 4 (- 3) + 12 = 0; 0 = 0.

Т. к 0 = 0, то -3 является корнем исходного уравнения.

Ответ. х = -3

Если а равно нулю, и b равно нулю, то корнем уравнения ах + b = 0 является любое число.

Например:

0 = 0. Т. к 0 равно 0, то корнем уравнения 0х + 0 = 0 является любое число.

Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Например:

0 = 6. Т. к 0 не равно 6, то 0х – 6 = 0 не имеет корней.

Системы линейных уравнений.

Система линейных уравнений – это система, все уравнения которой линейные.

Решить систему - значит найти все ее решения.

Прежде чем решать систему линейных уравнений, можно определить число её решений.

Пусть дана система уравнений: {а1х + b1y = с1, {а2х + b2y = c2.

Если а1 делённое на а2 не равно b1 делённое на b2, то система имеет одно единственное решение.

Если а1 делённое на а2 равно b1 делённое на b2, но равно с1 делённое на с2, то система не имеет решений.

Если а1 делённое на а2 равно b1 делённое на b2, и равно с1 делённое на с2, то система имеет бесконечно много решений.

Система уравнений, имеющая, по крайней мере, одно решение, называется совместной.

Совместная система называется определенной, если она имеет конечное число решений, и неопределенной, если множество ее решений бесконечно.

Система, не имеющая ни одного решения, называется несовместной или противоречивой.

Способы решения линейных уравнений

Всего есть несколько способов решения линейных уравнений:

1) Метод подбора. Это самый простейший способ. Он заключается в том, что подбирают все допустимые значения неизвестного путём перечисления.

Например:

Решить уравнение.

Пусть х = 1. Тогда

4 = 6. Т. к 4 не равно 6, то наше предположение, что х = 1 было неверным.

Пусть х = 2.

6 = 6. Т. к 6 равно 6, то наше предположение, что х = 2 было верным.

Ответ: х = 2.

2) Способ упрощения

Этот способ заключается в том, что все члены содержащие неизвестное переносим в левую часть, а известные в правую с противоположным знаком, приводим подобные, и делим обе части уравнения на коэффициент при неизвестном.

Например:

Решить уравнение.

5х – 4 = 11 + 2х;

5х – 2х = 11 + 4;

3х = 15; : (3) х = 5.

Ответ. х = 5.

3) Графический способ.

Он заключается в том, что строится график функций данного уравнения. Т. к в линейном уравнение у = 0, то график будет параллелен оси ординат. Точка пересечения графика с осью абсцисс будет решением данного уравнения.

Например:

Решить уравнение.

Пусть у = 7. Тогда у = 2х + 3.

Построим график функций обоих уравнений:

Способы решения систем линейных уравнений

В седьмом классе изучают три способа решения систем уравнений:

1) Способ подстановки.

Этот способ заключается в том, что в одном из уравнений выражают одно неизвестное через другое. Полученное выражение подставляют в другое уравнение, которое после этого обращается в уравнение с одним неизвестным, затем решают его. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например.

Решить систему уравнений.

5х - 2у - 2 = 1.

3х + у = 4; у = 4 - 3х.

Подставим полученное выражение в другое уравнение:

5х – 2(4 – 3х) -2 = 1;

5х – 8 + 6х = 1 + 2;

11х = 11; : (11) х = 1.

Подставим полученное значение в уравнение 3х + у = 4.

3 · 1 + у = 4;

3 + у = 4; у = 4 – 3; у = 1.

Проверка.

/3 · 1 + 1 = 4,

\5 · 1 – 2 · 1 – 2 = 1;

Ответ: х = 1; у = 1.

2) Способ сложения.

Этот способ заключается в том, что если данная система состоит из уравнений, которые при почленном сложении образуют уравнение с одним неизвестным, то решив это уравнение, мы получим значение одного из неизвестных. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например:

Решить систему уравнений.

/3у – 2х = 5,

\5х – 3у = 4.

Решим полученное уравнение.

3х = 9; : (3) х = 3.

Подставим полученное значение в уравнение 3у – 2х = 5.

3у – 2 · 3 = 5;

3у = 11; : (3) у = 11/3; у = 3 2/3.

Итак, х = 3; у = 3 2/3.

Проверка.

/3 · 11/3 – 2 · 3 = 5,

\5 · 3 – 3 · 11/ 3 = 4;

Ответ. х = 3; у = 3 2/3

3) Графический способ.

Этот способ основан на том, что в одной системе координат строятся графики уравнений. Если графики уравнения пересекаются, то координаты точки пересечения являются решением данной системы. Если графики уравнения являются параллельными прямыми, то данная система не имеет решений. Если графики уравнений сольются в одну прямую, то система имеет бесконечно много решений.

Например.

Решить систему уравнений.

18х + 3у - 1 = 8.

2х - у = 5; 18х + 3y - 1 = 8;

У = 5 - 2х; 3у = 9 - 18х; : (3) у = 2х - 5. у = 3 - 6х.

Построим графики функций у = 2х - 5 и у = 3 - 6х на одной системе координат.

Графики функций у = 2х - 5 и у = 3 - 6х пересекаются в точке А (1; -3).

Следовательно решением данной системы уравнений будет х = 1 и у = -3.

Проверка.

2 · 1 - (- 3) = 5,

18 · 1 + 3 · (-3) - 1 = 8.

18 - 9 – 1 = 8;

Ответ. х = 1; у = -3.

Заключение

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

Виды алгебраических уравнений и способы их решения

Для учащихся, интересующихся математикой, при решении алгебраических уравнений высших степеней эффективным методом быстрого нахождения корней, деление с остатком на двучлен х –  или на ах + b , является схема Горнера.

Рассмотрим схему Горнера.

Обозначим неполное частное при делении Р(х) на х –  через

Q (x ) = b 0 x n -1 + b 1 x n -2 + … + b n -1 , а остаток через b n .

Так как Р(х) = Q (x )(х– ) + b n , то имеет место равенство

а 0 x n + а 1 x n -1 + … + а n = (b 0 x n -1 + b 1 x n -2 + … + b n -1)(х– ) + b n

Раскроем в правой части скобки и сравним коэффициенты при одинаковых степенях х слева и справа. Получим, что а 0 = b 0 и при 1  k  n имеют место соотношения а k = b k -  b k -1 . Отсюда следует, что b 0 = а 0 и b k = а k +  b k -1 , 1  k  n .

Вычисление коэффициентов многочлена Q (x ) и остатка b n запишем в виде таблицы:

а 0

а 1

а 2

а n-1

а n

b 0 = а 0

b 1 = а 1 +  b 0

b 2 = а 2 +  b 1

b n-1 = а n-1 +  b n-2

b n = а n +  b n-1

Пример 1. Разделить многочлен 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1.

Решение. Используем схему Горнера.

При делении 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1 получим 2x 3 – 9х 2 + 6x – 1

Ответ: 2x 3 – 9х 2 + 6x – 1

Пример 2. Вычислить Р(3), где Р(х) = 4x 5 – 7x 4 + 5х 3 – 2х + 1

Решение. Используя теорему Безу и схему Горнера, получим:

Ответ: Р(3) = 535

Упражнение

    Используя схему Горнера, разделить многочлен

4x 3 – x 5 + 132 – 8х 2 на х + 2;

2) Разделить многочлен

2x 2 – 3x 3 – х + х 5 + 1 на х + 1;

3) Найти значение многочлена Р 5 (х) = 2х 5 – 4х 4 – х 2 + 1 при х = 7.

1.1. Отыскание рациональных корней уравнений с целыми коэффициентами

Способ отыскания рациональных корней алгебраического уравнения с целыми коэффициентами дается следующей теоремой.

Теорема: Если уравнение с целыми коэффициентами имеет рациональные корни, то они есть частное от деления делителя свободного члена на делитель старшего коэффициента.

Доказательство: а 0 x n + а 1 x n -1 + … + а n = 0

Пусть х = р/q – рациональный корень, q , p – взаимнопростые.

Подставив дробь р/q в уравнение, и освободившись от знаменателя, получим

а 0 р n + а 1 р n -1 q + … + а n -1 pq n -1 + a n q n = 0 (1)

Перепишем (1) двумя способами:

a n q n = р(– а 0 р n -1 – а 1 р n -2 q – … – а n -1 q n -1) (2)

а 0 р n = q (– а 1 р n -1 –… – а n -1 рq n -2 – а n q n -1) (3)

Из равенства (2) следует, что a n q n делится на р, и т.к. q n и р взаимно просты, то a n делится на р. Аналогично из равенства (3) следует, что а 0 делится на q . Теорема доказана.

Пример 1. Решить уравнение 2x 3 – 7x 2 + 5х – 1 = 0.

Решение. Целых корней уравнение не имеет, находим рациональные корни уравнения. Пусть p /q несократимая дробь является корнем уравнения, тогда р находим среди делителей свободного члена, т.е. среди чисел  1, а q среди положительных делителей старшего коэффициента: 1; 2.

Т.е. рациональные корни уравнения надо искать среди чисел  1,  1/2, обозначим Р 3 (х) = 2x 3 – 7x 2 + 5х – 1, Р 3 (1)  0, Р 3 (–1)  0,

Р 3 (1/2) = 2/8 – 7/4 + 5/2 – 1 = 0, 1/2 – корень уравнения.

2x 3 – 7x 2 + 5х – 1 = 2x 3 – x 2 – 6 x 2 + 3х + 2х– 1 = 0.

Получим: x 2 (2х – 1) – 3x (2х – 1)+ (2х– 1) = 0; (2х– 1)(x 2 – 3x + 1) = 0.

Приравнивая второй множитель к нулю, и решив уравнение, получим

Ответ:
,

Упражнения

Решить уравнения:

    6x 3 – 25x 2 + 3х + 4 = 0;

    6x 4 – 7x 3 – 6х 2 + 2х + 1 = 0;

    3x 4 – 8x 3 – 2х 2 + 7х – 1 = 0;

1.2. Возвратные уравнения и методы решения

Определение. Уравнение с целыми степенями относительно неизвестного называется возвратным, если его коэффициенты, равноотстоящие от концов левой части, равны между собой, т.е. уравнение вида

аx n + bx n -1 + cx n -2 + … + cx 2 + bx + а = 0

Возвратное уравнение нечетной степени

аx 2 n +1 + bx 2 n + cx 2 n -1 + … + cx 2 + bx + а = 0

всегда имеет корень х = – 1. Поэтому оно эквивалентно объединению уравнению х + 1 = 0 и  х 2 n +  x 2 n -1 + … +  x +  = 0. Последнее уравнение является возвратным уравнением четной степени. Таким образом, решение возвратных уравнений любой степени сводится к решению возвратного уравнения четной степени.

Как же его решать? Пусть дано возвратное уравнение четной степени

аx 2 n + bx 2 n -1 + … + dx n +1 + ex n + dx n -1 + … + bx + а = 0

Заметим, что х = 0 не является корнем уравнения. Тогда делим уравнение на х n , получим

аx n + bx n -1 + … + dx + e + dx -1 + … + bx 1- n + аx -n = 0

Группируем попарно члены левой части

а(x n + x - n ) + b (x n -1 + x -(n -1) + … + d(x + x -1 ) + e = 0

Делаем замену х + х -1 = у. После подстановки выражений х 2 + х -2 = у 2 – 2;

х 3 + х -3 = у 3 – 3у; х 4 + х -4 = у 4 – 4у + 2 в уравнение получим уравнение относительно у Ау n + By n -1 +Cy n -2 + … + Ey + D = 0.

Для решения этого уравнения нужно решить несколько квадратных уравнений вида х + х -1 = у k , где к = 1, 2, … n . Таким образом, получим корни исходного уравнения.

Пример 1. Решить уравнение х 7 + х 6 – 5х 5 – 13х 4 – 13х 3 – 5х 2 + 2х + 1 = 0.

Решение. х = – 1 является корнем уравнения. Применим схему Горнера.

Наше уравнение примет вид:

(х + 1)(х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1) = 0

1) х + 1 = 0, х = -1;

2) х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1 = 0 | : x 3 0; х 3 + х 2 – 6х – 7 – 6/х + 1/х 2 + 1/х 3 =0.

Группируя, получим: .

Вводим замену:
;
;
.

Получим относительно у уравнение: у 3 – 3у + у 2 – 2 – 6у – 7 = 0;

у 3 + у 2 – 9у– 9 = 0; у 2 (у + 1) – 9(у + 1) = 0; (у + 1)(у 2 – 9); у 1 = -1, у 2,3 =  3.

Решая уравнения
,
,
,

получим корни:
,
,
,

Ответ: х 1 = -1,
,

Упражнения

Решить уравнения.

    2х 5 + 5х 4 – 13х 3 – 13х 2 + 5х + 2 = 0;

    2х 4 + 3х 3 – 16х 2 + 3х + 2 = 0;

    15х 5 + 34х 4 + 15х 3 – 15х 2 – 34х – 15 = 0.

1.3. Метод замены переменной при решении уравнений

Метод замены переменной - самый распространенный метод. Искусство производить замену переменной заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Если дано уравнение

F (f (x )) = 0, (1)

то заменой неизвестной у = f (x ) оно сначала сводится к уравнению

F (у) = 0, (2)

а потом после нахождения всех решений уравнения (2) у 1 , у 2 , …, y n , … сводится к решению совокупности уравнений f (x ) =у 1, f (x ) = у 2 ,…, f (x ) = у 2 , …

Основными способами реализации метода замены переменной являются:

    использование основного свойства дроби;

    выделение квадрата двучлена;

    переход к системе уравнений;

    раскрытие скобок парами;

    раскрытие скобок парами и деление обеих частей уравнения;

    понижение степени уравнения;

    двойная замена.

1.3.1. Понижение степени уравнения

Решить уравнение (х 2 + х + 2)(х 2 + х + 3) = 6 (3)

Решение. Обозначим х 2 + х + 2 = у, тогда полечим у(у+1)=6, решая последнее, получим у 1 = 2, у 2 = -3. Данное уравнение (3) равносильно совокупности уравнений х 2 + х + 2 = 2

х 2 + х + 2 = -3

Решая первое, получим х 1 = 0, х 2 = -1. Решая второе, получим
,

Ответ: х 1 = 0, х 2 = -1,

1.3.2. Уравнение четвертой степени вида (х + а)(х + b )(x + c )(x + d ) = m , где а + b = c + d , или а + с = b + d , или а + d = b + c .

Пример. Решить уравнение (х - 1)(х - 7)(x -4)(x + 2) = 40

Решение. – 1- 4 = - 7 + 2, - 5 = - 5, перемножив эти пары скобок, получим уравнение (х 2 - 5х - 14)(х 2 - 5х + 4) = 40

Введем замену: х 2 - 5х – 14 = у, получим уравнение у(у + 18) = 40, у 2 + 18у = 40, у 2 + 18у – 40 = 0. у 1 = -20, у 2 = 2. Возвращаясь к исходной переменной, решим совокупность уравнений:

Х 2 - 5х – 14 = - 20 х 1 = 2; х 2 = 3

х 2 - 5х – 14 = 2 х 3,4 =

Ответ: х 1 = 2; х 2 = 3 х 3,4 =

1.3.3. Уравнение вида (х + а)(х + b )(x + c )(x + d ) = Ех 2 ,

где ab = cd , или ac =bd , или ad = bc . Раскрываем скобки парами и делим обе части на х 2  0.

Пример. (х - 1)(х - 2)(x - 8)(x - 4) = 4х 2

Решение. Произведение чисел, стоящих в первой и третьей, во второй и четвертой скобках, равны, т.е. – 8 (- 1) = (- 2)(- 4). Перемножим указанные пары скобок и запишем уравнение (х 2 - 9х + 8)(х 2 - 6х + 8) = 4х 2 .

Поскольку х = 0 не является корнем уравнения, разделим обе части уравнения на х 2 0, получим:
, замена:
, исходное уравнение примет вид:
t (t +3) =4, t 2 + 3 t =4, t 2 + 3 t – 4=0, t 1 =1, t 2 = - 4.

Вернемся к исходной переменной:

х 2 - 10х + 8 = 0

х 2 - 5х + 8 = 0

Первое уравнение решаем, получим х 1,2 = 5

Второе уравнение не имеет корней.

Ответ: х 1,2 = 5

1.3.4. Уравнение четвертой вида (ах 2 + b 1 х + c )(a х 2 + b 2 x + c ) = A х 2

Уравнение (ах 2 + b 1 х+ c )(a х 2 + b 2 x + c ) = A х 2 , где с 0, А 2
, которое после замены неизвестной
перепишется в виде квадратного и легко решается.

Пример. (х 2 + х+ 2)(х 2 + 2x + 2) = 2х 2

Решение. Легко видно, что х = 0 не является корнем данного уравнения, разделив данное уравнение на х 2 , получим уравнение

замена
, получим уравнение (у+1)(у+2) = 2, решив его, имеем корни у 1 = 0; у 2 = - 3, следовательно исходное уравнение равносильно совокупности уравнений

решая, получим х 1 = -1; х 2 = -2.

Ответ: х 1 = -1; х 2 = -2

1.3.5. Уравнение вида: a (cx 2 + p 1 x + q ) 2 + b (cx 2 + p 2 x + q ) 2 = Ax 2

Уравнение a (cx 2 + p 1 x + q ) 2 + b (cx 2 + p 2 x + q ) 2 = Ax 2 , где a , b , c , q , A таковы, что q 0, A 0, c 0, a 0, b 0, не имеет корня х = 0, поэтому, разделив уравнение на х 2 , получим равносильное ему уравнение
, которое после замены
перепишется в виде квадратного уравнения, которое легко решается.
+ 1)( x 2 – 14x + 15 = 0

x 2 – 7 x + 15 = 0

Ответ:

В продолжение темы:
Право

Решетников Александр Сергеевич, учитель истории, зам.директора по УВР Негосударственное общеобразовательное частное учреждение "Православная гимназия имени святителя Филофея,...

Новые статьи
/
Популярные