Диены таблица. Диены — номенклатура, получение, характерные химические свойства. Резины и каучуки

Общая характеристика алкадиенов

Алкадиены являются представителями ненасыщенных углеводородов, которые содержат в своем углеродном скелете две двойные связи, поэтому их еще называют диеновыми углеводородами.

А вот что собой представляет общая формула гомологического ряда алкадиенов:

СnН2n-2.

Но, эта формула также соответствует и гомологическому ряду алкинов, а также циклоалкенов.

О наличии двух двойных связей в молекуле нам говорит название класса, где «ди» обозначает два, а «ен» переводится, как связь, то есть двойная связь.

Классификация диенов

Также следует отметить, что в зависимости от взаимного расположения двойных связей, диены можно разделить на такие группы, как:

Первая группа

Кумулированные диены. Это такие соединения, молекулы которых имеют две двойные связи расположены у одного и того же атома углерода (1,2-диены)

Вторая группа

Сопряженные диены. К ним относятся алкадиены, в молекулах, которых имеются две двойные связи, разделенные одинарной или одной простой связью:

Вот какой вид иногда могут иметь алкадиены, которые имеют сопряженные связи:

СН2-СН-СН-СН2

Третья группа

Изолированные диены. К ним относятся такие соединения, у которых молекулы имеют две двойные связи и притом эти двойные связи разделены несколькими одинарными

CH2=CH-CH2-CH=CH2

Изомерия и номенклатура

Если рассматривать изометрию алкадиенов, то здесь следует сказать, что для них характерна, как структурная изометрия, так и пространственная.

На рисунке внизу мы видим примеры структурной и пространственной изометрии:



Что же касательно составления названий алкадиенов, то здесь существуют следующие правила:

Во-первых, основная цепь в обязательном порядке должна содержать две двойные связи;
Во-вторых, нумерацию, как правило начинают с того конца, с которого ближе расположена кратная связь;
В-третьих, дают названия заменителям и указывают атомы углерода, от которого они отходят;
В-четвертых, атомы углерода дают название алкадиена, как правило, от тех атомов, от которых была образована двойная связь.

Получение алкадиенов

Если рассматривать вопрос получения диенов, то, как правило, используют:

1. Метод С.В.Лебедева. С его помощью в промышленности было налажено производство бутадиена из этилового спирта. В основе этого метода, который разработал Лебедев, лежит реакция:

425 °С, Аl2O3, ZnO
2СН3-СН2-ОН -----------------> СН9=СН-СН=СН9 + 2Н2O + Н2


Сергей Васильевич Лебедев был известным химиком, который посвятил свои научные исследования полимеризации, изомеризации и гидрогенизации непредельных углеводородов. С помощью полимеризации 1,3-бутадиена под действием натрия, ему удалось получить синтетический каучук.

2. Способ дегидрирования. Одним из распространенных промышленных методов получения бутадиена-1,3 является каталитическое дегидрирование н -бутана, которые выделяют из частей нефтеперегонки:

СН3-СН2-СН2-СН3 -> CH2=CH-СН=СН2 + 2Н2

При рассмотрении этого процесса, на его первой стадии может образовываться как бутен-1, так и бутен-2.



Изопрен (2-метилбутадиен-1,3) получают методом дегидрирования 2-метилбутана.

3. Способ дегидрогалогенирования. Для получения алкадиенов можно применять стандартный лабораторный, которым является способ реакции отщепления.

При воздействии спиртового раствора щелочи на дибромалканы, мы можем наблюдать процесс отщепления двух молекул галогеноводорода и образование двух двойных связей:


Физические свойства

Что касается физических свойств алкадиенов, то при изолированной двойной связи, они имеют такие же свойства, как и обычные алкены.

При обычных условиях, бутадиен-1,3 представляет собой легко сжижающийся газ, который имеет довольно неприятный запах. А изопрен и другие низшие диены, являются бесцветными легкокипящими жидкостями. Что касается высших диенов, то они представлены в виде твердых веществ.

Химические свойства

Как вам уже известно, химические и физические свойства алкадиенов имеют много общего с алкенами, хотя алкадиены с сопряженными связями имеют свои нюансы и являются более активными.

1. Для алкадиенов свойственна реакции присоединения, и они способны присоединять, как водород, так и галогены, и галогеноводороды.

Главной особенность диенов является то, что они обладают способностью присоединения не только молекулы 1,2, но и продукт присоединения 1,4:


Предпочтительное протекание реакции, как правило, зависимо от условий и способа проведения.

2. Следующим химическим свойством диенов является реакции полимеризации. Она может происходить под воздействием катионов или свободных радикалов. Как правило, такая полимеризация этих соединений приводит к образованию полимеров, которые обладают свойствами, напоминающими природный каучук. Поэтому можно сказать, что основной областью применения бутадиена и изопрена, является получение синтетического каучука.

Натуральный и синтетический каучуки. Резина

Пока человек не научился производить синтетический каучук, до тех пор в промышленности использовали натуральный каучук. Получали такой каучук с помощью каучуконосных растений, методом выделения млечного сока, то есть так называемого латекса. Наиболее ценным растением по выделению природного каучука считалась произрастающая в Латинской Америке гевея.

В этой области было проведено огромное количество исследований, которые выявили, что натуральный каучук имеет в своем составе цис-полиизопрен, то есть, это такой полимер, который по своему строению соответствует изопрену (2-метилбутадиену-1,3).

Но благодаря проведению различных опытов и исследований, американский изобретатель Чарльз Нельсон Гудьир сумел провести вулканизацию каучука. Им было обнаружено, что что при нагревании каучука с серой в итоге получается довольно таки эластичный материал, который даже по техническим характеристикам превосходит каучук. Вот таким методом Гудьиру удалось получить резину.

Чарльз Нельсон проведя вулканизацию, заметил, что за счет сульфидных мостиков происходит сшивание полимерных цепей и в итоге увеличивается прочность и устойчивость к различным органическим веществам и растворителям.


А так как в двадцатом веке начался стремительный рост промышленности, то и потребность в каучуке также возросла. Но использование в промышленных масштабах природного каучука было не рентабельно и довольно таки дорого, то ученым пришлось искать пути получения синтетического каучука.

Но, первоначально не все так просто складывалось в этой области, и первый полученный каучук отдаленно напоминал смолу, которая к тому же, при ее вулканизации имела очень плохое качество.

Как вам уже известно, из сегодняшнего урока, синтетический каучук был получен по методу химика С.В.Лебедева только в 1932 году, тогда же его производство и приобрело промышленные масштабы.

В основе такого технологически удобного способа получения каучука, лежала полимеризация бутадиена-1,3 с использованием такого катализатора, как металлический натрий.

Благодаря этой технологии удалось получить полибутадиен, который обладал довольно неплохими технологическими свойствами. Но и здесь не все было так гладко, как хотелось, потому что, полученный полимер был нестерео-регулярным и соответственно, произведенная на его основе резина не отличалась особой эластичностью и уступала качеству резины, полученной из природного каучука.

А вот изопреновые и стерео-регулярные полимеры ученым удалось получить только в пятидесятых годах двадцатого века.

Конечно же, в настоящее время, современные технологии в химической промышленности позволяют производить не один, а несколько видов синтетического каучука. Широкое использование в качестве мономеров получили такие типы синтетических каучуков, как изопреновый, бутадиеновый, хлоропреновый, стирольный и т.д.

Также, большой популярностью пользуется резина, которая произведена на основе сополимеров алкадиенов, сочлененными двойными связями, а также производные алкенов.

Для таких видов резины характерны: хорошая эластичность, прочность и морозоустойчивость. Кроме того, эти виды резины обладают пониженной газопроницаемостью, а также устойчивы к действию ультрафиолета и различных окислителей.

Домашнее задание

Ответьте на поставленные вопросы и решите данные задания.



Определение, гомологический ряд, номенклатура алкадиенов.

Алкадиены – органические соединения, углеводороды алифатического (ациклического) непредельного характера, в молекуле которых между атомами углерода – две двойные связи, и которые соответствуют общей формуле C n H 2 n -2 , где n =3 или n >3. Их также называют диеновыми углеводородами.

Простейшим представителем алкадиенов является пропадиен.

Гомологический ряд.

Общая формула диеновых углеводородов C n H 2n-2 . В названии алкадиенов содержится корень, обозначающий число атомов углерода в углеродной цепи, и суффикс –диен («две» «двойные связи»), обозначающий принадлежность соединения к данному классу.

C 3 H 4 – пропадиен

C 4 H 6 – бутадиен

C 5 H 8 – пентадиен

C 6 H 10 – гексадиен

C 7 H 12 – гептадиен

C 9 H 16 – нонадиен

Номенклатура алкадиенов.

1. Выбор главной цепи. Образование названия углеводорода по номенклатуре ИЮПАК начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкадиенов главную цепь необходимо выбирать так, чтобы в нее входили обе двойные связи.

2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, с которого ближе расположены по старшинству (по преимуществу):

кратная связь → заместитель → углеводородный радикал .

Т.е. при нумерации в определении названия алкадиена положение кратной связи имеет преимущество перед остальными.

Нумеровать атомы в цепи нужно таким образом, чтобы атомы углерода, связанные двойными связями, получили минимальные номера.

Если по положению двойных связей нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для алкенов.

3. Формирование названия. , После корня, обозначающего числа атомов углерода в цепи, и суффикса –диен, обозначающий принадлежность соединения к классу алкенов, через в конце названия указывают местоположение двойных связей в углеродной цепи, т.е. номер атомов углерода, у которых начинаются двойные связи.

Если есть заместители, то в начале названия указывают цифры − номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди – два, три – три, тетра − четыре, пента − пять) и название заместителя (метил. этил, пропил). Затем без пробелов и дефисов − название главной цепи. Главная цепь называется как углеводород − член гомологического ряда влкадиенов (пропадиен, бутадиен, пентадиен и т.д.).

Алкадиены входят в класс углеводородов и имеют две двойные связи. Какие физические и химические свойства алкадиенов известны, и в чем особенность этих соединений?

Общая характеристика алкадиенов

Алкадиены – это непредельные углеводороды с двумя двойными связями углерод-углерод. Когда в алкодиенах двойные связи находятся между двумя или более атомами углерода, то эти связи считаются изолированными.

Рис. 1. Алкадиены структурная формула.

Изолированные алкодиены по своим химическим свойствам ведут себя также, как и алкены. Только, в отличие от алкенов, в реакцию вступают две связи, а не одна.

Диены могут находится в жидком или газообразном состоянии. Низшие диены – бесцветные жидкости, а бутадиен и аллен – газы. Бутадиен является исходным веществом для получения каучука.

Рис. 2. Бутадиен.

Диены можно разделить на три вида:

  • сопряженные, в которых двойные связи разделены одинарными;
  • аллены с двойными связями;
  • диены с изолированными связями, в которых двойные связи разделяются несколькими одинарными.

Химические свойства алкадиенов

Химические свойства соединений зависят от двойных связей. Для алкадиенов характерна реакция присоединения. Если в диеновом углеводороде две двойные связи расположены через одну простую связь (сопряженное положение), то происходит дополнительное перекрывание электронной плотности p-облаков двух п-связей через простую связь. Этот электронный эффект называется эффектом сопряжения, или мезомерным эффектом. В результате происходит выравнивание связей по длине и энергии, образуется единая электронная система с делокализацией п-связей. Молекула может реагировать по двум направлениям, при этом выход продуктов зависит от устойчивости карбкатионов.

Если положение двойных связей в алкадиене не является сопряженным, то реакция вначале идет по любой из двух связей. При добавлении реагента идет последовательное присоединение по другой связи, с образованием предельного соединения.

Реакция присоединения может протекать в 2х направлениях: 1,4 и 1,2 - присоединение. Например,

CH 2 =CH-CH=CH 2 +Br 2 =CH 2 =CH+CHBr=CH 2 Br

CH 2 =CH-CH=CH 2 +Br 2 =BrCH 2 -CH=CH-CH 2 Br

Также алкадиены способны к полимеризации:

nCH 2 =CH-CH=CH 2 = (-CH 2 -CH=CH-CH 2 -)n.

Полимеризация – это образование молекулы большой молекулярной массы за счет соединения множества молекул, имеющих кратную связь.

Каталитически возбужденный водород присоединя­ется в 1,2- и 1,4-положения:

4.4.2. Галогенирование

Галогены также способны присо­единяться к сопряженным системам в 1,2- и 1,4-положения, причем ко­личество 1,4-продукта зависит от строения диенового углеводорода, при­роды галогена и условий реакции. Выход продукта 1,4-присоединения возрастает при повышении температуры (до известного предела) и при переходе от хлора к иоду:

Как и в случае этиленовых соединений, присоединение может происхо­дить как по ионному, так и по радикальному механизму.

При ионном механизме присоединения, например хлора, первоначаль­но возникающий π-комплекс (I) быстро превращается в сопряженный карбений-хлорониевый ион с положительным зарядом на С 2 и С 4 , кото­рый можно изобразить двумя граничными формулами (II) или одной мезомерной формулой (III). Этот ион присоединяет далее анион хлора в положения 2 и 4 с образованием продуктов 1,2- и 1,4-присоединения. По­следние, в свою очередь, могут изомеризоваться в подходящих условиях один в другой до достижения состояния равновесия через тот же самый промежуточный карбениевый ион:

Если в условиях реакции присоединения система близка к состоянию равновесия, содержание каждого изомера в продуктах реакции зависит от положения равновесия. Обычно 1,4-продукт энергетически более выго­ден и потому преобладает.

Наоборот, когда система далека от состояния равновесия, может обра­зоваться преимущественно 1,2-продукт, если энергия активации в реак­ции его образования ниже, чем в реакции образования 1,4-продукта. Так, в случае присоединения хлора к дивинилу получается примерно равное количество 1,2- и 1,4-дихлорбутенов, в случае же присоединения брома получается около 66% 1,4-продукта, так как связь С-Вг менее прочна, чем связь С-С1, и равновесие для бромида достигается легче. Повыше­ние температуры приближает систему к равновесному состоянию.

При радикальном присоединении атома галогена образуется сопря­женный радикал, который также обладает двойственной реакционной способностью, однако образуется преимущественно 1,4-аддукт:

4.4.3. Гидрогалогенирование

В реакциях присоединения галогеноводо-родов действуют те же закономерности:

4.4.4. Гипогалогенирование

Гипогалогенные кислоты и их эфиры присое­диняются преимущественно в 1,2-положения. Здесь система в момент ре­акции особенно далека от состояния равновесия (связь С–О значительно прочнее связей С–Hlg), а энергия активации в реакции образования 1,2-продукта ниже, чем в реакции образования 1,4-продукта:

4.4.5. Димеризация диенов

При нагревании молекулы диеновых углеводородов способны присоединяться друг к другу таким образом, что одна из них реа­гирует в 1,2-, а другая в 1,4-положениях. Одновременно в небольших ко­личествах получается также продукт присоединения обеих молекул в 1,4-положение:

В такую реакцию димеризации могут вступать и молекулы различных диенов:

4.4.6. Диеновый синтез

Особенно легко такие реакции идут в том случае, когда одна из реагирующих молекул имеет активированную двойную связь, электрофильность которой повышена благодаря сопряжению с электроотрицательными атомами. Подобные конденсации получили на­звание диенового синтеза или реакции Дильса -Альдера:

Эта реакция широко используется для качественного и количественно­го определения диеновых углеводородов, а также для синтеза различных соединений с шестичленными циклами.

Реакции диенового синтеза и димеризации алкадиенов идут через цик­лическое переходное состояние с одновременным или почти одновремен­ным образованием обеих новых связей, т. е. как перециклические про­цессы.

Возможность и условия протекания подобного рода реакций циклизации, проходящих без промежуточного образования радикалов или ионов, подчиняются закономерностям, нося­щим название правил Вудворта -Гофмана. Согласно этим правилам, для того чтобы замкнулся цикл, орбитали, образующие новые связи, должны иметь возможность перекры­ться с образованием связывающих орбиталей, т. е. должны быть направлены друг к другу сегментами одинакового знака.

Если для этого не требуется возбуждение какой-либо из реагирующих молекул (переход электронов на более высокий уровень с изменением знака сегментов), то процесс разрешен по симметрии как термический, т. е. реакция будет идти или ускоряться при нагревании. Если для указанной выше ориентации орбиталей необходимо перевести электроны одной из моле­кул на более высокий уровень (на разрыхляющую орбиталь), реакция разрешена по симмет­рии только как фотохимический процесс.

Разумеется, такие реакции могут идти и по радикальному или каталити­ческому механизмам с образованием промежуточных частиц. К таким процессам правила Вудворта–Гофмана отношения не имеют.

Алкадиены - непредельные углеводороды, в состав которых входят две двойные связи. Общая формула алкадиенов - C n H 2n-2 .

Если двойные связи находятся в углеродной цепи между двумя или боле атомов углерода , то такие связи называются изолированными . Химические свойства таких диенов не отличаются от алкенов , только в реакцию вступают 2 связи, а не одна.

Если же двойные связь разделены только одной σ - связью, то это - сопряженная связь:

Если же диен выглядит так: С=С=С , то такая связь является кумулированной, а диен называется - алленом .

Строение алкадиенов.

π -электронные облака двойных связей перекрываются между собой, образуя единое π -облако. В сопряженной системе электроны делокализованы по всем атомам углерода:

Чем длиннее молекула, тем она более устойчива.

Изомерия алкадиенов.

Для диенов характерна изомерия углеродного скелета, изомерия положения двойных связей и пространственная изомерия .

Физические свойства алкадиенов.

Бутадиен-1,3 - легко сжижающийся газ с неприятным запахом. А изопрен - жидкость.

Получение диенов.

1. Дегидрирование алканов:

2. Реакция Лебедева (одновременное дегидрирование и дегидратация):

Химические свойства алкадиенов.

Химические свойства алкадиенов обусловлены наличием двойных связей. Реакция присоединения может протекать в 2х направлениях: 1,4 и 1,2 - присоединение. Например,

В продолжение темы:
Безопасность

Вариант 1 Часть 1. 1. Наука, изучающая процессы жизнедеятельности в живых организмах : 2. Выберите черты сходства между человеком и млекопитающими: а) наличие ушной...

Новые статьи
/
Популярные