Физико химические свойства океанической воды кратко. Некоторые физико-химические свойства морской воды. Движение вод океана

Мирово́й океа́н - основная часть гидросферы, непрерывная, но не сплошная водная оболочка Земли, окружающая материки и острова, и отличающаяся общностью солевого состава. Мировой океан покрывает почти 70 % земной поверхности.

Общие физико-географические сведения :

· Средняя температура: 5 °C;

· Среднее давление: 20 МПа;

· Средняя плотность: 1,024 г/см³;

· Средняя глубина: 3711 м [источник не указан 339 дней ] ;

· Общая масса: 1,4·10 21 кг;

· Общий объём: 1370 млн км³ ;

· pH: 8,1±0,2.

Глубочайшей точкой океана является Марианский жёлоб, находящийся в Тихом океане вблизи Северных Марианских островов. Его максимальная глубина - 11 022 м.

Физические свойства

Плотность морской воды колеблется в пределах от 1020 до 1030 кг/м³ и зависит от температуры и солености. При солености, превышающей 24‰, температура максимальной плотности становится ниже температуры замерзания - при охлаждении морская вода всегда сжимается, и плотность её растет .

Скорость звука в морской воде - около 1500 м/с.

Как известно, за международную единицу измерения массы принят килограмм. Платиновый килограммовый эталон хранится в Палате мер и весов в Париже, а очень точные дубликаты имеются в аналогичных учреждениях многих стран. Но почему именно килограмм (а не фунт, унция или золотник) принят теперь во всем мире за единицу измерения массы? Дело в том, что все другие единицы были произвольными, а килограмм имеет свой природный эквивалент: такова масса одного кубического дециметра воды при 4 градусах Цельсия.



Учитывать температуру совершенно необходимо, так как с ее изменением меняется и плотность воды. Всякая ли вода годится для установления эталона массы? В учебниках об этом обычно ничего не говорится, так как в данном случае под словом «вода» подразумевают вовсе не ту жидкость, которая течет из водопроводного крана, а химически чистое вещество: воду, подвергшуюся специальной обработке или же синтезированную из водорода и кислорода и не содержащую никаких примесей.

Морская вода, представляющая собой сложный раствор, таким требованиям совершенно не удовлетворяет: ее физические свойства, в том числе и плотность, значительно отличаются от свойств химически чистой воды. В среднем плотность морской воды равна 1,025 грамма на кубический сантиметр. Стало быть, ее литр на 25 граммов тяжелее пресной. Но плотность воды неодинакова по всему Мировому океану, она несколько меняется в зависимости от солености и температуры. Чем выше соленость, тем больше и плотность. Зависимость плотности от температуры обратная: чем вода теплее, тем плотность ее меньше. Так, наименьшая плотность морской воды - 1,022 грамма на кубический сантиметр - была отмечена в поверхностных слоях экваториальной зоны Тихого океана, а наибольшая-1,028 грамма на кубический сантиметр - вблизи океанского дна.

Даже незначительное изменение плотности морской воды влечет за собой весьма существенные последствия. Так, при охлаждении верхних слоев океана вода становится плотнее и опускается. Навстречу ей устремляются менее плотные глубинные воды. Возникают вертикальные токи. В сочетании с горизонтальными течениями они придают Мировому океану вид слоеного пирога, каждый слой которого характеризуется своими особыми показателями плотности, солености и температуры. Благодаря вертикальным токам вода в океане до известной степени перемешивается, в глубину проникают насыщенные кислородом поверхностные воды, из придонных слоев поднимаются богатые биогенными солями придонные массы воды.

Азбучная истина о том, что вода замерзает при О градусов, не распространяется на морскую воду. Из-за растворенных солей она остается жидкой и при отрицательной температуре. Только охлажденная ниже минус 1,9 градуса Цельсия, она начинает переходить в твердое состояние. Правда, это касается только воды с нормальной океанической соленостью. Если же в ней растворено не 35 граммов соли на килограмм, а меньше, то она станет замерзать при более высокой температуре. Так, Азовское море, соленость которого равна 12 промилле, замерзает при 0,6 градуса ниже нуля, а Белое море (соленость его 25 промилле) - при 1,4 градуса ниже нуля.

Когда изменяется агрегатное состояние пресной воды, ее состав не меняется. Совсем иначе обстоит дело с морской водой. Замерзание моря начинается с образования тонких, похожих на иглы ледяных кристалликов, совершенно лишенных соли. Если в этот момент марлевым сачком собрать такие иглы и растопить, то получится вполне чистая пресная вода. Естественно, что на первых порах образования льда соленость верхних слоев воды несколько повышается за счет поступления в эти слои тех порций соли, которые не вошли в кристаллические ледяные иглы. Только потом, когда начинается смерзание комков этих кристаллов, лед также становится соленым, но его соленость все же ниже солености окружающей морской воды. Во время таяния льда прилежащие слои воды несколько распресняются.

Распространение в морской воде световых и звуковых волн также имеет свои особенности. Еще 20- 25 лет назад большинство людей могло судить о том, как выглядит подводный мир, только Наблюдая его через поверхность воды. Но с тех пор, как подводные очки и маски повсюду вошли в моду, любой желающий может лично познакомиться с красотами царстве Нептуна. При этом стала очевидной одна весьма существенная деталь: в маске не очень хорошо виден подводный мир реки, в море же видимость превосходна. Удивительного в этом ничего нет: морская воде значительно прозрачнее воды большинства пресноводных водоемов.

Самая высокая прозрачность отмечена в центральной части Атлантического океана, где служащий эталоном белый металлический круг диаметром в 30 сантиметров - «диск Секки» - виден через поверхность воды на глубине более 65 метров. Прозрачность вод Тихого и Индийского океанов несколько меньше и равна соответственно 60 и 50 метрам. Чем ближе к берегу, тем больше в морской воде различных взвешенных частиц и мельчайших планктонных организмов, поэтому прозрачность там ниже, чем в открытом океане.

В Средиземном море «диск Секки» не виден уже на глубине 30 метров, в Черном море - на глубине 20 метров, а в Балтийском - даже на 13 метрах. В большинстве пресноводных водоемов прозрачность воды не превышает 10 метров, в реках она, как правило, значительно меньше, иногда лишь 0,5-1 метр. Только в Байкале, который славится чистотой своей воды, ее прозрачность равна 30-40 метрам.

По сравнению с атмосферой водная среда пропускает свет хуже, потому что сильнее поглощает его и рассеивает. Когда солнце находится в зените (это возможно только в тропиках), в воду проникает почти весь его световой поток; косые же лучи утреннего или полуденного времени в значительной степени отражаются водной гладью. Поэтому сумерки под водой наступают раньше, чем на суше; день там короче, а ночь длиннее.

Даже в прозрачной воде открытых частей океана яркость света убывает с глубиной примерно в десять раз на каждые 50 метров. Человек, совершающий глубоководное погружение, уже ниже 400 метров не различает за стеклом иллюминатора аппарата никаких следов дневного света. Правда, чувствительная фотографическая пластинка после часовой экспозиции на глубине 1000 метров при проявлении темнеет, но на глубине 1700 метров она вообще не засвечивается.

Прозрачность морской воды неодинакова для разных частей видимого спектра: более короткие световые волны (фиолетовая часть спектра) проникают через нее легче и дальше, чем длинные (красная часть спектра). Первыми в море поглощаются красные лучи, поэтому на глубине более метра красные предметы кажутся уже не такими яркими, как на воздухе. Синие и фиолетовые лучи проникают значительно дальше, они придают подводным пейзажам своеобразный цветовой колорит, за который освещаемая днем часть морского дна получила образное название «голубого континента».

На глубине цвет самых обыденных и хорошо известных предметов меняется до неузнаваемости. Жак Кусто рассказывает: «Мы брали с собой таблицы с ярко-красными, голубыми, желтыми, зелеными, пурпурными и оранжевыми квадратами, а также шкалу серых тонов от белого до черного и фотографировали на различной глубине вплоть до сумеречной зоны. На глубине пять метров красный цвет казался розовым, а на двенадцатом метре абсолютно черным. Одновременно исчезал и оранжевый цвет. На глубине 35 метров желтый цвет начал превращаться в зеленый, здесь царит уже почти полная монохроматия.

Как-то раз мы охотились в море под уединенными скалами Ла Кассадань. Нырнув на 35 метров, Дюма подстрелил гигантскую ставриду. Гарпун прошел сквозь тело позади головы, но не задел позвоночника. Загарпуненная рыба отчаянно сопротивлялась. Дюма стал подтягиваться все ближе и ближе к ставриде по тросу. Наконец он подобрался вплотную, схватил кинжал и вонзил его прямо в сердце рыбины. Кровь брызнула мощным фонтаном.

Но кровь была зеленая! Ошеломленный этим зрелищем, я подплыл и уставился на струю. Она была изумрудного цвета. Мы с Дюма переглянулись в недоумении. Мы не раз плавали среди гигантских ставрид, но никогда не подозревали, что у них зеленая кровь. Потрясая гарпуном со своим поразительным трофеем, Дюма направился к поверхности. На глубине пятнадцати метров кровь стала коричневой. Шесть метров - она уже розовая, а на поверхности она растеклась алым потоком».

Цвет моря зависит именно от того, что часть лучей поглощается морской водой. Чем вода чище и прозрачней, тем синее цвет. Впервые попав в открытый океан, трудно поверить, что вода в нем не подкрашена. Ближе к материкам цвет воды зеленеет от примеси взвешенных частиц, у самого берега он может быть желтоватым. Вообще говоря, чистая вода обладает крайне низкой по сравнению с другими жидкостями способ» полностью рассеивать свет. Это связано с тем, что рассеяние в любой чистой оптической среде происходит из-за неоднородности ее плотности. Вода же в отличи от многих других жидкостей очень малосжимаема, поэтому плотность ее почти однородна. По-видимому, наблюдающееся светорассеяние в чистой морской воде и в воде чистых горных озер связано с наличием в ней мельчайших пузырьков воздуха.

При отражении от морской поверхности спектральный состав света не меняется. А поскольку источником света обычно служит небосвод, то его цвет и придает окраску морской воде. Чем чище небо, чем меньше в нем облаков и аэрозолей (дымов и пыли), тем оно синее и тем синее должен быть дальний план морской поверхности, поскольку дальний план отражает значительно большую часть света, чем передний. Практически можно считать, что дальний план в этом смысле начинается, когда луч зрения составляет с морской поверхностью угол менее 10 градусов; для человека, стоящего на борту судна высотой около 4 метров, эта зона начинается приблизительно на расстоянии 20-30 метров.

Вода служит хорошим проводником для звука. До тех пор, пока человек не проник во владения Нептуна, они казались ему безмолвными. Поэт В. Жуковский так представлял себе тишину подводного мира: «Все спало для слуха в той бездне глухой». Но ведь ни он сам, ни Ф. Шиллер, балладу которого «Ныряльщик» под новым названием «Кубок» перевел В. Жуковский, никогда не были под водой. Они лишь выражали в поэтической форме господствовавшее тогда общее мнение о полной тишине, царящей в морских глубинах. Действительно, человеческое ухо, приспособленное к воздушной среде, не воспринимает звуки, исходящие из воды, но стоит применить простейшие слуховые аппараты, как подводный мир окажется наполненным самыми разнообразными звуками.

В годы первой мировой войны по всем морям и океанам безнаказанно разбойничали немецкие подводные лодки, обнаружить которые военные корабли союзников никак не могли. Но вот удалось изготовить и спустить в воду гидрофоны. На оборудованных ими военных судах - охотниках за субмаринами - натренированные операторы с наушниками - «слухачи» - стали среди тысяч звуков распознавать шумы винтов немецких подводных лодок. Поначалу, правда, не только проплывающий кит, но даже стая сельдей нередко служили поводом для боевой тревоги.

Подводный мир оказался вовсе не безмолвным. Большой знаток морских животных зоолог Н. Тарасова так описывает подводную симфонию вблизи Севастополя: «...Непрекращающееся щелканье бесчисленного множества рачков-альфеусов, в которое по временам врываются «стоны» горбылей или ритмичное урчание морских петухов, а то и лающий «скрежет зубовный» ставрид, наполняют воду разнообразными и громкими звуками».

Звук распространяется в воздухе с постоянной скоростью 340 метров в секунду. В воде он успевает за это же время пробежать расстояние в 4,5 раза больше. Но скорость эта непостоянна и зависит от температуры, солености и давления воды, то есть в конечном счете от ее плотности. В воде с нормальной океанической соленостью при нуле градусов вблизи поверхности скорость звука равна 1440 метрам в секунду. На глубине 10 километров при тех же прочих условиях его скорость возрастает до 1630 метров в секунду. В нагретых до 30 градусов поверхностных водах тропической зоны океана скорость звука повышается до 1543 метров в секунду.

Ультразвук, то есть акустические волны с частотой свыше 16 тысяч колебаний в секунду, уже не воспринимаемый человеческим ухом, поглощается водной средой гораздо сильнее, чем звуки низкой частоты, но зато его можно направлять в виде узкого пучка. Эта особенность ультразвуковых колебаний использована в эхолоте, с помощью которого точно и быстро измеряется глубина. От специального ультразвукового датчика, помещенного на судне, через небольшие промежутки времени вертикально вниз посылается ультразвуковой сигнал. Отразившись от дна, он возвращается обратно и улавливается чувствительной приемной аппаратурой.

Зная скорость прохождения ультразвука и определив время между посылкой и возвращением сигнала, можно легко вычислить расстояние от поверхности до дна. В современных приборах регистрация глубины производится автоматически, а самописец на бумажной ленте вычерчивает кривую, соответствующую профилю дна моря. Так как скорость ультразвука, как и слышимых звуков, зависит от солености, температуры и давления воды, в данные эхолота необходимо вносить поправки.

Моряки, пользующиеся эхолотом, давно заметили, что любые препятствия, находящиеся между поверхностью моря и его дном, также регистрируются на ленте прибора. Оказалось возможным, слегка видоизменив эхолот, использовать его для поисков скоплений промысловых рыб. Хорошо натренированный специалист по характеру кривой на ленте может не только определить местонахождение и размер стаи, но и сказать, к какому виду относятся составляющие ее рыбы.

Солёность является важнейшая особенность океанской воды. Этот раствор содержит почти все известные на Земле химические элементы. Общее количество солей 50-10 16 т. Они могут покрыть дно океана слоем могут покрыть дно океана слоем 60 м, всю Землю – 45 м, сушу – 153 м. Соотношение солей в океанской воде остается постоянным, это обеспечивается высокой динамикой океанских вод. В составе преобладают NaCl (77,8 %), MgCl (10,9 %) и др.

Средняя соленость океана воды 35 0 / 00 . Отклонение от средней солености в ту или иную сторону вызывается изменениями в приходно-расходном балансе пресной воды. Так, атмосферные осадки, воды с ледников, сток с суши уменьшают соленость; испарение – повышает соленость.

В распределении солености в океане существуют как зональные, так и региональные черты. Зональные черты связаны с климатическими условиями (распределение осадков и испарения). В экваториальной зоне воды слегка рассолены (О>E), в тропических и субтропических широтах (E>O) соленость максимальная для поверхностных вод океана – 36-37 0 / 00 , к северу и югу от этой зоны соленость понижается. Понижению солености в высоких широтах способствует таяние льдов.

Широтную зональность в распределении солености на поверхности океана нарушают течения. Теплые повышают соленость, холодные – понижают. Средняя соленость океанов на поверхности различна. Наибольшей соленостью обладает Атлантический океан – 35,4 0 / 00 , наименьшей Северный Ледовитый океан – 32 0 / 00 (велика опресняющая роль сибирских вод). Изменения солености связаны в основном с поверхностными слоями, непосредственно получающими пресные воды и определяемые глубиной перемешивания. Все изменения солености происходят в верхних слоях до глубин 1500 м., глубже соленость не меняется.

Температура воды Мирового океана.

Изменения в ходе элементов теплового баланса определяют ход температуры воды. Суточные амплитуды колебания температуры воды на поверхности океана не превышают в среднем 0,5 0 C, Наибольшая суточная амплитуда в низких широтах (до 1 0 C), наименьшая – в высоких (до 0 0 C). Суточные колебания температуры в океане играют подчиненную роль.

Годовые амплитуды колебаний температуры на поверхности океана больше, чем суточные. Годовые колебания температуры невелики в низких (1 0) и высоких (2 0) широтах. В первом случае большое количества равномерно распределяется в течение года, во втором – за короткое лето вода не успевает сильно нагреваться. Наибольшие годовые амплитуды (от 10 0 до 17 0) отмечаются в умеренных широтах. Наибольшие средние годовые температуры воды (27-28 0) наблюдаются в экваториальных и тропических широтах, к северу и югу от них температура понижается до 0 0 С и ниже в полярных широтах. Термический экватор располагается примерно на 5 0 С с.ш. Океанские течения нарушают зональное распределение температуры. Течения, которые переносят тепло по направлению к полюсам (например, Гольфстрим), выделяются в виде положительных температурных аномалий. Поэтому в тропических широтах под воздействием течений температура воды у восточных берегов выше, чем у западных, а в умеренных широтах, наоборот у западных выше, чем у восточных. В южном, более мористом полушарии, зональность в распределении температур воды почти не нарушается. Самая высокая температура на поверхности океана (+32 0 С) наблюдалась в августе в Тихом океане, самая низкая в феврале в Северном Ледовитом океане (-1,7 0 С). В среднем за год поверхность океана в южном полушарии холоднее, чем в северном (влияние Антарктиды). Средняя годовая температура на поверхности океана +17,4 0 С, что выше, чем годовая температура воздуха +14 0 . Самый теплый – Индийский океан – около +20 0 С. Тепло солнечной радиации, нагревающей верхний слой воды, крайне медленно передается нижележащим слоям. Перераспределение тепла в толще океанской воды происходит благодаря конвекции и перемешиванию волнениями и течениями. Отсюда, температура с глубиной понижается. На глубине где-то около 100-200 м температура резко падает. Слой резкого падения температуры воды с глубиной называют термоклином.

Термоклин в океане от экватора до 50-60 0 с. и ю.ш. существует постоянно на глубинах от 100 до 700 м. В Северном Ледовитом океане температура воды до глубины 50-100 м падает, а затем растет достигая максимума на глубине 200-600 м. Это повышение температуры вызвано проникновением из умеренных широт теплых вод, более соленых, чем верхние слои воды.

Лед в океане появляется в высоких широтах при понижении температуры воды ниже точки замерзания. Температура замерзания зависит от её солености. Чем выше соленость, тем ниже температура замерзания. Лед имеет меньшую плотность, чем пресный лед. Соленый лед менее прочный, чем пресный, но более пластичный и вязкий. Он не ломается на зыби (слабом волнении). Приобретает зеленоватый оттенок, в отличие от голубого цвета у пресного льда. Лед в океане может быть неподвижным и плавучим. Неподвижный лед – сплошной ледяной покров, связанный с сушей или мелью. Обычно это ледяной припай. Плавучий лед (дрейфующий) не связан с берегом и перемещается под действием ветра и течений.

Срединно-океанические хребты

Пересекают все океаны, образую единую планетарную систему общей протяженностью свыше 60 тыс. км, а общая площадь их составляет 15,2 % площади Мирового океана. Срединно-океанические хребты действительно занимают срединное положение в Атлантическом и Индийском океанах, в Тихом океане они смещены на восток к берегам Америки.

Рельеф срединно-океанических хребтов резко расчленен, причем по мере удаления от оси горные шпили сменяются зонами холмистого рельефа и еще более выполаживаются в районе сочленения с глубоководными равнинами. Хребты состоят из горных систем и разделяющих их долинообразных депрессий, вытянутых в соответствии с общим простиранием. Высота отдельных горных вершин достигает 3-4 км, общая ширина срединно-океанических хребтов колеблется от 400 до 2000 км. Вдоль осевой части хребта прослеживается продольная впадина, называемая рифтом или рифтовой долиной (рифт от англ. щель). Ее ширина от 10 до 40 км, а относительная глубина от 1 до 4 км. Крутизна склонов долины 10-40°.

Стенки долины ступенями разделяются на несколько уступов. Рифтовая долина – наиболее молодая и тектонически наиболее активная часть срединно-океанических хребтов, она имеет интенсивное блоково-грядовое расчленение. Ее центральная часть состоит из застывших базальтовых куполов и рукавообразных потоков, расчлененных гьярами – зияющими трещинами растяжения без вертикального смещения шириной от 0,5 до 3 м (иногда 20 м) и протяженностью десятки м.

Срединно-океанические хребты разбиты трансформными разломами, нарушающие их непрерывность в широтном направлении. Амплитуда горизонтального смещения составляет сотни км (до 750 км в экваториальной зоне Срединно-Атлантического хребта), а вертикального до 3-5 км.

Иногда отмечаются мелкие формы рельефа дна называемые микрорельефом, среди которого выделяют эрозионный, биогенный и хемогенный.

Вода это полимерное соединение молекул Н 2 О, в отличие от водяного пара. В строении молекулы воды могут участвовать различные изотопы О и Н. Наибольшее распространение имеют 1 Н – легкий водород, 2 Н – дейтерий (150 мг⁄л.), 16 О, 17 О, 18 О. Основную массу образуют молекулы чистой воды 1 Н 2 16 О, смесь всех остальных видов воды называется тяжелой водой, отличающейся от чистой воды большей плотностью. На практике под тяжелой водой понимают оксид дейтерия 2 Н 2 16 О (D 2 О), под сверхтяжелой водой – оксида трития 3 Н 2 16 О (Т 2 О). Последней в мировом океане содержится ничтожно малое количество – 800 грамм (в пересчете на тритий). К основным физическим свойствам воды относятся оптические, акустические, электрические и радиоактивность.


Оптические свойства

Обычно под ними понимают проникновение света в воду, поглощение и рассеяние его в воде, прозрачность морской воды, ее цвет.

Поверхность моря освещается непосредственно солнечными лучами (прямая радиация) и светом, рассеянным атмосферой и облаками (рассеянная радиация). Одна часть солнечных лучей отражается от морской поверхности в атмосферу, другая проникает в воду после преломления на поверхности вод.

Морская вода – полупрозрачная среда, поэтому свет не проникает на большие глубины, а рассеивается и поглощается. Процесс ослабления света носит избирательный характер. Составные части белого света (красный, оранжевый, зеленый, голубой, синий, фиолетовый) по-разному поглощаются и рассеиваются морской водой. По мере проникновения в воду вначале исчезает красный и оранжевый (приблизительно на глубине 50 м), далее желтый и зеленый (до 150 м), а затем – голубой, синий и фиолетовый (до 400 м).

Под прозрачностью традиционно понимают глубину погружения белого диска диаметром 30 см, на которой он перестает быть видимым. Прозрачность должна измеряться при определенных условиях, так как ее величина зависит от высоты наблюдения, времени суток, облачности и волнений моря. Наиболее точны замеры, которые проведены при спокойной, ясной погоде около полудня, с высоты 3-7 м над поверхностью воды.

Совокупность действий поглощения и рассеивания света обусловливает голубой цвет чистой (без примесей) морской воды. Окраска поверхности моря зависит от ряда внешних условий: угол зрения, цвет неба, наличие облаков, ветровых волн и т.д. Так при появлении волн море быстро синеет, а при плотных облаках – темнеет.

По мере приближения к берегам уменьшается прозрачность моря, вода зеленеет, иногда приобретает желтоватые и коричневые оттенки. В открытом море прозрачность и цвет определяются взвешенными частицами органического происхождения, планктоном. В период развития фитопланктона (весна, осень) прозрачность моря уменьшается, а цвет становится более зеленым. В центральных частях прозрачность обычно превышает 20 м, а цвет находится в пределах синих тонов. Наибольшая прозрачность (65,5 м) зафиксирована в Саргассовом море. В умеренных и полярных широтах, богатых планктоном, прозрачность воды составляет 15-20 м, а цвет моря зеленовато-голубой. В местах впадения крупных рек цвет морской воды мутно- и коричневато-желтый, прозрачность снижается до 4 м. Резко меняется окраска моря под влиянием растительных или животных организмом. Массовое скопление какого-либо одного организма может окрасить поверхность моря в желтый, розовый, молочный, красный, коричневый и зеленый цвет. Это явление называется цветением моря. В некоторых случаях в ночное время происходит свечение моря, связанное с изучением биологического света морскими организмами.

Акустические свойства

Определяют возможность распространения в морской воде звука – волнообразно распространяющихся колебательных движений частиц упругой среды, в качестве которой выступает морская вода. Сила звука пропорциональна квадрату частоты, которая определяется числом упругих колебаний в секунду. Поэтому от источника одной и той же мощности можно получить звук большей силы, увеличивая частоту звуковых колебаний. Для практических целей в морском деле (эхолотирование, подводная связь) используются ультразвук (звук большой частоты), который к тому же характеризуется слаборасходящимся пучком акустических лучей.

Скорость звука в морской воде зависит от плотности и удельного объема воды. Первая характеристика, в свою, очередь, зависит от солености, температуры и давления. Скорость звука в морской воде колеблется от 1400 до 1550 м/с, что в 4-5 раз больше скорости распространения звука в воздухе. Распространение звука в воде сопровождается его затуханием вследствие поглощения и рассеивания, а также преломлением и отражением звуковых волн.

На некоторой глубине в толще океанской воды имеется зона, где скорость звука минимальна, звуковые лучи, претерпевая многократное внутреннее отражение, распространяются в этой зоне на сверхдальние расстояния. Этот слой с минимальной скоростью распространения звука получил название звукового канала. Звуковой канал характеризуется свойством непрерывности. Если источник звука помещен возле оси канала, то звук распространяется на расстояние в тысячи километров (максимально зарегистрированное расстояние 19200 км). В мировом океане звуковой канал расположен в среднем на глубине 1 км. Для полярных морей характерен эффект приповерхностного расположения звукового канала (глубины 50-100 м), как результат отражения звука от поверхности моря.

После выключения источника звука какое-то время в толще воды сохраняется остаточное звучание, получившее название реверберации. Это следствие отражения и рассеяния звуковых волн. Различают донную, поверхностную и объемную реверберацию, в последнем случае рассеивание звука происходит с помощью газовых пузырьков, планктона, взвеси.

Электрические свойства

Чистая (пресная) вода - плохой проводник электричества. Морская вода, представляя собой почти полностью ионизированный раствор, хорошо проводит электрический ток. Электропроводность зависит от солености и температуры воды, чем выше соленость и температура, тем выше электропроводность. Причем в большей степени на электропроводность влияет соленость. Например, в диапазоне температур от 0 до 25°С электропроводность возрастает лишь в два раза, тогда как в диапазоне солености от 10 до 40‰ - в 3,5 раза.

В толще морской воды существуют теллурические токи, обусловленные корпускулярным излучением солнца. Поскольку электропроводность морской воды лучше, чем твердой оболочки, то величина этих токов в океане выше, чем в литосфере. С глубиной она несколько увеличивается. При движении морской воды в ней индуцируется электродвижущая сила, пропорциональная напряженности магнитного поля и скорости движения морской воды (проводника). Измерив наведенную электродвижущуюся силу и зная напряженность магнитного поля в данном месте и в данный момент, можно определить скорость морских течений.

Радиоактивные свойства

Морская вода обладает радиоактивностью, поскольку в ней растворены и радиоактивные элементы. Основная роль принадлежит радиоактивному изотопу 40 К и в значительно меньшей степени радиоактивным изотопам Th, Rb, C, U и Ra. Естественная радиоактивность морской воды в 180 раз меньше радиоактивности гранита и в 40 раз меньше радиоактивности осадочных пород континентов.

Кроме рассмотренных физических свойств, морская вода обладает свойствами диффузии, осмоса и поверхностного натяжения.

Молекулярная диффузия выражается в перемещении частиц растворенного в воде вещества без механического перемешивания.

Явление осмоса, т.е. диффузии растворенных веществ через пористую перегородку (мембрану), имеет в основном биологическое значение, но может быть использовано и для получения чистой воды из морской.

Поверхностное натяжение – свойство воды иметь на поверхности тонкую прозрачную пленку, стремящуюся сократиться. Это явление имеет решающее значение при образовании капиллярных волн на поверхности моря.

Химический состав океанских вод

Морская вода отличается от воды рек и озер горько-соленым вкусом и большой плотностью, что объясняется растворенными в ней минеральными веществами. Количество их, выраженное в граммах на килограмм морской воды, называется соленостью (S) и выражается в промилле (‰). Общая соленость составляет 35‰ или 35% или 35 г на 1 кг воды. Такая соленость морской воды называется нормальной и характерна для всей массы воды, за исключением поверхностного слоя в 100-200 м, где соленость колеблется от 32 до 37‰, что связано с климатической зональностью. В аридных зонах, где испарение велико, а поверхностный сток мал, соленость увеличивается. В гумидных зонах соленость уменьшается за счет опресняющего влияния стока поверхностных вод с континента. Климат сильнее сказывается во внутренних морях. В Красном море соленость достигает 41-43‰. Особенно высокая соленость (200-300‰) наблюдается в отшнурованных от моря лагунах аридных областей (Кора-Богаз-Гол). Соленость Мертвого моря 260-270‰.

Элементный состав Солевой элементный состав

морской воды морской воды

О 85, 8% Cl 55,3 %

H 10,7 % Na 30,6 %

Cl 2,1 % SO 4 7,7 %

Na 1,15 % Mg 3,7 %

Mg 0,14 % Ca 1,2 %

S 0,09 % K 1,1 %

Ca 0,05 % Br 0,2 %

K 0,04 % CO 2 0,2 %

Остальное меньше 0,001 %.

В солевом составе морской воды преобладают:

Хлориды 89,1 % (NaCl -77,8% - галит, MgCl 2 – 9,3% - бишофит, КCl - 2% - сильвин);

Сульфаты 10,1% (Mg SO 4 - 6,6% - эпсомит, CaSO 4 – 3,5 % - ангидрит)

Карбонаты 0,56 %

Броматы 0,3 %.

Газовый состав морской воды

В воде растворены: кислород, углекислый газ, азот, местами сероводород.

Кислород поступает в воду двумя путями:

Из атмосферы,

За счет фотосинтеза фитопланктона (зеленых растений)

6 СО 2 + 6Н 2 О = С 6 Н 12 О 6 +6О 2 +674 ккал (свет + хлорофилл).

Его содержание сильно колеблется от 5 до 8 см 3 на литр и зависит от температуры, солености и давления. Растворимость кислорода сильно понижается при повышении температуры, поэтому его много в высоких широтах. Имеет место сезонные колебания, при повышении температуры кислород выделяется в атмосферу и наоборот, так осуществляется динамическое взаимодействие атмосферы и гидросферы. Такая же обратная зависимость существует между содержанием кислорода и соленостью: чем больше соленость, тем меньше кислорода. Зависимость же содержания кислорода от давления прямая: чем больше давление, тем больше кислорода растворено в воде. Наибольшее количество кислорода содержится на поверхности воды (за счет атмосферы и фотосинтеза) и на дне (за счет давления и меньшего расхода организмами) до 8 см 3 на литр – эти две пленки сливаются в береговой зоне. В средней части водоема содержание кислорода – наименьшее – 2-3 см 3 на литр. Благодаря вертикальной и горизонтальной циркуляции вод в океанах почти всюду содержится свободный кислород. Кислород расходуется на дыхание растений и животных и окисление минералов.

Углекислый газ содержится в воде 1) частично в свободном растворенном состоянии и 2) в химически связанной форме в составе карбонатов и бикарбонатов. Суммарное содержание СО 2 в воде более 45 см 3 на литр, из которых только половина падает на долю свободного СО 2 . Источники углекислого газа: атмосфера, вулканические газы, органика и речные воды. Расход: фотосинтез, образование карбонатных минералов. Содержание СО 2 также регулируется температурой, в верхних прогретых слоях морских вод растворимость СО 2 падает и он выделяется в атмосферу. Создается его нехватка, что приводит к образованию нерастворимого карбоната кальция СаСО 3 , который выпадает в осадок. В холодных водах отмечается высокое содержание СО 2 .

Азот содержится в воде в количестве 13 см 3 на литр и поступает в основном из атмосферы.

Сероводород распространен ограниченно и приурочен к замкнутым котловинным морям, сообщающимся с Мировым океаном с помощью узких мелководных проливов. Это нарушает водообмен между ними. Например, Черное море, заражение сероводородом начинается, примерно, с глубины 150 м и увеличивается с глубиной, а в придонной части достигает 5-6 см 3 /литр. Сероводород продуцируется бактериями из сульфатов:

СаSO 4 + CH 4 → H 2 S +CaCO 3 +H 2 O

Кроме того, в водах Мирового океана растворено некоторое количество органического вещества (до 10 г/л в Азовском море), присутствует также определенное количество мути и взвеси.

Температура вод Мирового океана

Основной источник тепла, получаемый Мировым океаном, - Солнце. От него тепло поступает в виде коротковолновой солнечной радиации, состоящей из прямой радиации и радиации, рассеянной атмосферой. Часть радиации отражается обратно в атмосферу (отраженная радиация). Дополнительное тепло Мировой океан получает в результате конденсации паров воды на поверхности моря и за счет теплового потока, идущего из недр Земли. В то же время океан теряет тепло при испарении, эффективном излучении и водообмене. Алгебраическая сумма количества тепла, поступающего в воду и теряемое водой в итоге всех тепловых процессов, называется тепловым балансом моря. Поскольку средняя температура воды Мирового океана за многолетний период наблюдений остается неизменной, то все тепловые потоки в сумме равны нулю.

Распределение температуры по поверхности Мирового океана зависит, главным образом, от широты местности, поэтому наибольшие температуры располагаются в приэкваториальной зоне (термический экватор). Искажающее влияние оказывают материки, преобладающие ветры, течения. Многолетние наблюдения показывают, что средняя температура поверхностных вод равна 17,54 о С. Самый теплый – Тихий океан (19,37 о), самый холодный – Северный Ледовитый океан (-0,75 о). С глубиной температура понижается. В открытых частях океана это происходит сравнительно быстро до гл. 300-500 м и значительно медленнее до гл. 1200-1500 м; ниже 1500 м температура снижается очень медленно. В придонных слоях океана на глубинах ниже 3 км температура держится преимущественно +2 о С и 0 о С, достигая -1 о С в Северном Ледовитом океане. В некоторых глубоководных впадинах с гл. 3,5 – 4 км и до дна температура воды несколько повышается (например, Филиппинское море). Как аномальное явление следует рассматривать существенный рост температуры придонного слоя воды до 62 о С в некоторых впадинах Красного моря. Такие отклонения от общей закономерности – следствие влияния глубинных процессов, происходящих в земных недрах.

Верхний слой воды (в среднем до 20 м) подвержен суточным колебаниям температуры, его выделяют как деятельный слой. Переход от деятельного слоя к нижнему слою низких температур совершается в относительно тонком слое, который называется термоклином. Основные характеристики термоклина следующие:

Глубина залегания – от 300-400 м (в тропиках) до 500-1000 м (в субтропиках),

Толщина – от нескольких см до десятков метров,

Интенсивность (вертикальный градиент) –0,1-0,3 о на 1 м.

Иногда различают два термоклина: сезонный и постоянный. Первый образуется весной и исчезает зимой (его гл. 50-150 м). Второй, называемый «главным термоклином», существует круглогодично и залегает на относительно больших глубинах. Два типа термоклина встречаются в умеренных климатических зонах.

Термоклин характеризуется также изменением оптических свойств воды, этим пользуются рыбы, убегающие от хищников: они ныряют в термоклин, и хищники теряют их из виду.

Установлено также, что в течение последних 70 млн. лет температура глубинных вод Мирового океана понизилась с 14 до 2 о С.

Плотность морской воды

Плотность любого вещества – это величина, измеряемая массой вещества в единице объема. За единицу плотности принимается плотность дистиллированной воды при температуре 4 о С и нормальном атмосферном давлении. Плотность морской воды – это масса морской воды (в г.), заключенной в 1 см 3 . Она зависит от солености (прямая зависимость) и температуры (обратная зависимость). Плотность морской воды при температуре 0 о С и солености 35‰ составляет 1,028126 г/см 3 .

По поверхности плотность распределена неравномерно: она минимальна в экваториальной зоне (1,0210 г/см 3) и максимальна в высоких широтах (1,0275 г/см 3). С глубиной изменение плотности зависит от изменения температуры. Ниже 4 км плотность морской воды изменяется мало и достигает у дна 1,0284 г/см 3 .

Давление морской воды

Давление в морях и океанах возрастает на каждые 100 м на 1 Мпа или на 10 атм. Ее величина зависит также и от плотности воды. Рассчитать давление можно по формуле:

Р = Н ּρ/100,

Р – давление в Мпа,

Н – глубина, для которой производится расчет,

ρ плотность морской воды.

Под действием давления вышележащих слоев уменьшается удельный объем морской воды, т.е. она сжимается, но эта величина незначительна: при S =35‰ и t = 15 о С она равна 0, 0000442. Однако, если бы вода была абсолютна несжимаема, то объем Мирового океана увеличился бы на 11 млн. км 3 , а его уровень поднялся бы на 30 м.

Кроме термоклина (скачка температуры), выделяется и скачок давления – пикноклин. Иногда в морском бассейне выделяют несколько пикноклинов. Например, в Балтийском море известны два пикноклина: в интервале глубин 20-30 м и 65-100 м. Пикноклин используется иногда в качестве «жидкого грунта», позволяющего нейтрально уравновешенной подводной лодке лежать на нем, не работая винтами.

Мировой океан представляет собой главную часть гидросферы - водной оболочки Земли. Его воды покрывают 361 млн км2, или 70,8 %, поверхности земного шара, что почти в 2,5 раза превышаем площадь суши (149 млн км2, или 29,2 %). Важнейшее следствие такого глобального соотношения суши и моря состоит во влиянии Мирового океана на водный и тепловой баланс Земли. Около 10 % солнечной радиации, поглощенной поверхностью океана, расходуется на нагревание и турбулентный обмен теплотой между поверхностными слоями воды и нижними слоями атмосферы. Остальные 90 % теплоты затрачиваются на испарение. Испарение с поверхности океана является как главным источником воды в глобальном гидрологическом цикле, так и следствием высокой скрытой теплоты испарения воды, а это важный компонент глобального теплового баланса Земли. Акватория Мирового океана состоит из Атлантического, Тихого, Индийского, Северного Ледовитого и Южного океанов, окраинных морей (Баренцево, Берингово, Охотское, Японское, Карибское и др.), внутриконтинентальных морей (Средиземное, Черное, Балтийское). Не имеющие связи с Мировым океаном Каспийское и Аральское моря-озера условно называют морями исключительно из-за их больших размеров. В настоящее время это внутренние замкнутые водоемы, а в четвертичное время они соединялись с Мировым океаном.

В Мировом океане сосредоточено не менее 1,4 млрд км3 воды, что составляет около 94 % объема гидросферы. Эти огромные массы воды находятся в постоянном движении. Геологические процессы, протекающие в Мировом океане, многообразны и представляют собой взаимосвязанные явления. Они состоят из следующих процессов:

Разрушения, или абразии (от лат. «абрадо» - брею, соскабливаю), массивов горных пород, слагающих берега и часть мелководья;

Переноса и сортировки продуктов разрушения, приносимого с суши;

Накопления, или аккумуляции, различных осадков. Долгое время дно Мирового океана и его осадки оставались неисследованными. Лишь начиная с середины XX столетия начались целенаправленные исследования Мирового океана со специальн построенных научно - исследовательских кораблей. Вначале для изучения дна Мирового океана применялись различные геофизические приборы, установленные на кораблях, а образцы горных пород доставлялись специальными тралами - драгами. В результате этих работ были получены уникальные сведения о рельефе дна Мирового океана.

Физико-химические свойства вод морей и океанов

Соленость и химический состав вод. В морской воде в растворенном состоянии находится большое количество веществ. Суммарное содержание растворенных солей в морской воде называется ее соленостью (5) и выражается в промилле (%о). За среднюю соленость вод океана принимается величина около 35 %о. Это означает, что в 1 л воды содержится около 35 г растворенных солей (средняя величина солености морской воды). Соленость поверхностных вод Мирового океана колеблется от 32 до 37 %с, и такие колебания связаны с климатической зональностью, которая прямо влияет на испаряемость вод. В аридных зонах, где преобладает испаряемость, соленость увеличивается, а в гумидных областях и в местах стока крупных рек соленость уменьшается. В широких пределах меняется соленость во внутриконтинентальных морях. В Средиземном море она составляет 35 - 39 %>о, в Красном море увеличивается до 41 -43 %о, а в морях, расположенных в гумидных областях, главным образом из-за большого притока пресных вод соленость снижается. В Черном море она составляет 18 - 22 %о, в Каспийском -12-15 %о, в Азовском -12 %о, а в Балтийском - 0,3 - 6 %о. Такая низкая соленость Балтийского моря обусловлена большим объемом речного стока. Ведь в это море несут свои воды такие полноводные реки, как Рейн, Висла, Нева, Неман и др. Особенно высокая соленость (до 300 %о) наблюдается в отшнурованных от моря лагунах в аридных областях, например в заливе Кара-Богаз-Гол в Каспийском море.

В водах морей и океанов присутствуют почти все химические элементы Периодической системы Д. И. Менделеева. Содержание одних настолько велико, что именно их соотношение обусловливаем соленость морских и океанских вод, а количество других составляем тысячные и даже десятитысячные доли процента. При сопоставлении катионов и анионов оказывается, что в солевом составе морской воды преобладают хлориды (89,1 %), на втором месте стоят сульфаты (10,1 %), затем - карбонаты 0,56 %, а бромиды составляют всего 0,3 %.

Газовый режим . В водах Мирового океана в растворенном состоянии находятся различные газы, но главными из них являются кислород, углекислый газ и местами сероводород. Кислород поступает в морскую воду как непосредственно из атмосферы, так и за счет фотосинтеза фитопланктона. Главную роль и перераспределении газов играет глобальная океанская циркуляция. Благодаря ей происходит переток богатых кислородом холодных вод от высоких широт к экватору и поверхностных вод в придонную часть.

Углекислый газ находится в морской воде частично в растворен ном состояниии, а частично он химически связан в форме бикарбонатов Са(НС03) или карбонатов (СаС03). Растворимость С02 в морской воде зависит от температуры морской воды и возрастает с ее понижением. Поэтому холодные воды Арктики и Антарктики содержат больше углекислого газа, чем воды низких широт. Значительное содержание С02 отмечается в придонных холодных водах на глубинах ниже 4000 м. Это сказывается на растворении карбонатых раковин отмерших организмов, которые опускаются с поверхности на дно.

В некоторых морских бассейнах наблюдается аномальный газовый режим. Классическим примером служит Черное море, где, по данным Н. М. Страхова, на глубинах 150- 170 м вода в значительной степени обеднена кислородом и содержит в больших количествах сероводород. Его количество сильно возрастает в придонных слоях. Сероводород образуется благодаря жизнедеятельности сульфатсодержащих бактерий, которые восстанавливают сульфаты из Морской воды до сероводорода. Сероводородное заражение вызвано нарушением свободного водообмена между Черным морем и водами Средиземного моря. В Черном море существует расслоенность воды по солености. В верхней части располагаются опресненные воды (17-18 %о), а ниже соленые (20 - 22 %о). Это исключает вертикальную циркуляцию и приводит к нарушению газового режима, а затем к накоплению сероводорода. Недостаток кислорода в более глубоких слоях способствует развитию восстановительных процессов. Сероводородное заражение в придонной части Черного моря достигает 5 - 6 см3/л. Кроме Черного моря сероводородное заражение обнаружено в некоторых норвежских фиордах.

Температура морской воды . Распределение температур поверхностных слоев вод Мирового океана тесно связано с климатической зональностью. Среднегодовая температура в высоких широтах изменяется от 0 - 2 °С и достигает максимальных значений порядка 28 °С в экваториальных широтах. В умеренных широтах температура воды испытывает значительные сезонные колебания в пределах от 5 до 20 °С. Температура воды изменяется с глубиной, достигая в придонных частях на значительных глубинах всего 2 - 3 °С. В полярных областях она опускается до отрицательных значений порядка -1,0 -1,8 °С.

Переход от верхнего слоя воды с высокой температурой к нижнему слою с низкой температурой совершается в относительно тонком слое, который называется термоклином. Этот слой совпадает с изотермой 8 - 10° и находится на глубине 300 - 400 м в тропиках и 500- 1000 м в субтропиках. Общие закономерности в распределении температур нарушаются поверхностными теплыми и холодными, а также донными течениями.

Давление и плотность . Гидростатическое давление в океанах и морях соответствует массе столба воды и увеличивается с глубиной, достигая максимального значения в глубоких частях океана. Плотность морской воды в среднем составляет примерно 1,025 г/см3. В холодных полярных водах она увеличивается до 1,028, а в теплых тропических водах уменьшается до 1,022 г/см3. Все эти колебания обусловлены изменениями солености и температуры вод Мирового океана.

Элементы рельефа.

Выделяют четыре основные ступени рельефа дна океана: мате­риковую отмель (шельф), материковый склон, ложе океана и глубоко­водные впадины. В пределах ложа океана наблюдаются наибольшие перепады глубин и грандиоз­ные горные сооружения. Поэтому в пределах ложа стали выделять океанические котловины, срединно-океанические хребты и океаниче­ские поднятия.

Шельф (материковая отмель) - мелководная морская терраса, окаймляющая материк и являющаяся его продолжением. По существу, шельф представляет собой затопленную поверхность древней суши. Это область материковой земной коры, для которой характерен рав­нинный рельеф со следами затопленных речных долин, четвертичного оледенения, древних береговых линий.

Внешней границей шельфа является бровка - резкий перегиб дна, за пределами которого начинается материковый склон. Средняя глубина бровки шельфа - 133 м, однако в конкретных случаях она может меняться от нескольких десятков до тысячи метров. Поэтому термин "материковая отмель" не подходит для наименования этого элемента дна (лучше - шельф). Ширина шельфа изменяется от нуля (африканское побережье) до тысячи километров (побережье Азии). В целом шельф занимает около 7 % площади Мирового океана.

Материковый склон - область от бровки шельфа до материково­го подножья. Средний угол наклона материкового склона около 6°, но нередко крутизна склона может увеличиваться до 20-30°. Ширины материкового склона из-за крутого падения обычно невелика - око­ло 100 км. Наиболее характерной формой рельефа материкового склона являются подводные каньоны. Вершины их нередко врезаются в бровку шельфа, а устье достигает матери­кового подножья.

Материковое подножье - третий элемент рельефа дна, находя­щийся в пределах материковой земной коры. Материковое подножье представляет собой обширную наклонную равнину, образованную оса­дочными породами толщиной 3-5 км. Ширина этой всхолмленной рав­нины может достигать сотен километров, а площадь близка к площадям шельфа и материкового склона.

Ложе океана - наиболее глубокая часть дна океана, занимаю­щая более 2/3 всей площади Мирового океана. Преобладающие глубины ложа океана колеблются от 4 до 6 км, а рельеф дна наиболее спокойный. Основными элементами являются океанские котловины, срединно-океанические хребты и океанические поднятия.

Океанические котловины - обширные пологие понижения дна оке­ана с глубинами около 5 км. Дно котловины, плоское или слегка всхолмленное, обычно называют абиссальной (глубоководной) равни­ной. Выровненная поверхность абиссальных равнин обусловлена на­коплением осадочного материала, приносимого с суши. Наиболее обширные равнины находятся на глубоководных участках океанского дна. В целом абиссальные равнины занимают около 8 % ложа океана.

Срединно-океанические хребты - наиболее тектонически актив­ные зоны, в которых происходит новообразование земной коры. Они целиком сложены базальтовыми породами, образовавшимися в резуль­тате их поступления по разломам из недр Земли. Это обусловило свое­образие земной коры, слагающей срединно-океанические хребты, и выделение ее в особый рифтогенальный тип.

Океанические поднятия - крупные положительные формы рельефа ложа океана, не связанные с срединно-океаническими хребтами. Рас­положены они в пределах океанического типа земной коры и отлича­ются большими горизонтальными и значительными вертикальными размерами.

В глубоководной части океана обнаружено большое количество отдельно стоящих гор, не образующих каких-либо хребтов. Происхож­дение их вулканическое. Подводные горы, вершины которых представ­ляют собой ровную платформу, называют гайотами.

Глубоководные впадины (желоба ) - зона самых больших глубин Мирового океана, превышающих 6000 м. Борта их очень круты, а дно может быть выровненным, если оно покрыто осадками. Самые глубокие желоба расположены в Тихом океане.

Происхождение желобов связано с погружением литосферных плит в астеносферу при новообразовании морского дна и раздвижении плит. Желоба имеют значительные горизонтальные размеры. К настоящему времени в Мировом океана обнаружен 41 желоб (Тихий океан - 25, Атлантический - 7, Индийский - 9).

Солёность является важнейшая особенность океанской воды. Этот раствор содержит почти все известные на Земле химические элементы. Общее количество солей 50-10 16 т. Они могут покрыть дно океана слоем могут покрыть дно океана слоем 60 м, всю Землю – 45 м, сушу – 153 м. Соотношение солей в океанской воде остается постоянным, это обеспечивается высокой динамикой океанских вод. В составе преобладают NaCl (77,8 %), MgCl (10,9 %) и др.

Средняя соленость океана воды 35 0 / 00 . Отклонение от средней солености в ту или иную сторону вызывается изменениями в приходно-расходном балансе пресной воды. Так, атмосферные осадки, воды с ледников, сток с суши уменьшают соленость; испарение – повышает соленость.

В распределении солености в океане существуют как зональные, так и региональные черты. Зональные черты связаны с климатическими условиями (распределение осадков и испарения). В экваториальной зоне воды слегка рассолены (О>E), в тропических и субтропических широтах (E>O) соленость максимальная для поверхностных вод океана – 36-37 0 / 00 , к северу и югу от этой зоны соленость понижается. Понижению солености в высоких широтах способствует таяние льдов.

Широтную зональность в распределении солености на поверхности океана нарушают течения. Теплые повышают соленость, холодные – понижают. Средняя соленость океанов на поверхности различна. Наибольшей соленостью обладает Атлантический океан – 35,4 0 / 00 , наименьшей Северный Ледовитый океан – 32 0 / 00 (велика опресняющая роль сибирских вод). Изменения солености связаны в основном с поверхностными слоями, непосредственно получающими пресные воды и определяемые глубиной перемешивания. Все изменения солености происходят в верхних слоях до глубин 1500 м., глубже соленость не меняется.

Температура воды Мирового океана.

Изменения в ходе элементов теплового баланса определяют ход температуры воды. Суточные амплитуды колебания температуры воды на поверхности океана не превышают в среднем 0,5 0 C, Наибольшая суточная амплитуда в низких широтах (до 1 0 C), наименьшая – в высоких (до 0 0 C). Суточные колебания температуры в океане играют подчиненную роль.

Годовые амплитуды колебаний температуры на поверхности океана больше, чем суточные. Годовые колебания температуры невелики в низких (1 0) и высоких (2 0) широтах. В первом случае большое количества равномерно распределяется в течение года, во втором – за короткое лето вода не успевает сильно нагреваться. Наибольшие годовые амплитуды (от 10 0 до 17 0) отмечаются в умеренных широтах. Наибольшие средние годовые температуры воды (27-28 0) наблюдаются в экваториальных и тропических широтах, к северу и югу от них температура понижается до 0 0 С и ниже в полярных широтах. Термический экватор располагается примерно на 5 0 С с.ш. Океанские течения нарушают зональное распределение температуры. Течения, которые переносят тепло по направлению к полюсам (например, Гольфстрим), выделяются в виде положительных температурных аномалий. Поэтому в тропических широтах под воздействием течений температура воды у восточных берегов выше, чем у западных, а в умеренных широтах, наоборот у западных выше, чем у восточных. В южном, более мористом полушарии, зональность в распределении температур воды почти не нарушается. Самая высокая температура на поверхности океана (+32 0 С) наблюдалась в августе в Тихом океане, самая низкая в феврале в Северном Ледовитом океане (-1,7 0 С). В среднем за год поверхность океана в южном полушарии холоднее, чем в северном (влияние Антарктиды). Средняя годовая температура на поверхности океана +17,4 0 С, что выше, чем годовая температура воздуха +14 0 . Самый теплый – Индийский океан – около +20 0 С. Тепло солнечной радиации, нагревающей верхний слой воды, крайне медленно передается нижележащим слоям. Перераспределение тепла в толще океанской воды происходит благодаря конвекции и перемешиванию волнениями и течениями. Отсюда, температура с глубиной понижается. На глубине где-то около 100-200 м температура резко падает. Слой резкого падения температуры воды с глубиной называют термоклином.

Термоклин в океане от экватора до 50-60 0 с. и ю.ш. существует постоянно на глубинах от 100 до 700 м. В Северном Ледовитом океане температура воды до глубины 50-100 м падает, а затем растет достигая максимума на глубине 200-600 м. Это повышение температуры вызвано проникновением из умеренных широт теплых вод, более соленых, чем верхние слои воды.

Лед в океане появляется в высоких широтах при понижении температуры воды ниже точки замерзания. Температура замерзания зависит от её солености. Чем выше соленость, тем ниже температура замерзания. Лед имеет меньшую плотность, чем пресный лед. Соленый лед менее прочный, чем пресный, но более пластичный и вязкий. Он не ломается на зыби (слабом волнении). Приобретает зеленоватый оттенок, в отличие от голубого цвета у пресного льда. Лед в океане может быть неподвижным и плавучим. Неподвижный лед – сплошной ледяной покров, связанный с сушей или мелью. Обычно это ледяной припай. Плавучий лед (дрейфующий) не связан с берегом и перемещается под действием ветра и течений.

В продолжение темы:
Биология

Большинство исследователей признает, что древнейшей формой религии Египта, насколько ее можно проследить по историческим памятникам, было почитание местных номовых...

Новые статьи
/
Популярные