Общая характеристика элементов 4 а группы. Общая характеристика элементов главной подгруппы IV группы. Углеводороды, кремневодороды, германоводороды

8939 0

В 14 группу входят C, Si, Ge, Sn, Pb (табл. 1 и 2). Как и элементы 3А подгруппы, это p -элементы со сходной электронной конфигурацией внешней оболочки - s 2 p 2 . При перемещении вниз по группе атомный радиус возрастает, вызывая ослабление свзяи между атомами. Из-за усиливающейся делокализации электронов внешних атомных оболочек в этом же направлении возрастает электропроводность, поэтому свойства элементов изменяются от неметаллических к металлическим. Углерод (С ) в форме алмаза является изолятором (диэлектриком), Si и Ge - полуметаллы, Sn и Pb - металлы и хорошие проводники.

Таблица 1. Некоторые физические и химические свойства металлов 14 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Углерод Carbon [от лат. carbo — уголь]

ковалентный 77 при двойной связи 67, при тройной связи 60

14 С (следы)

Кремний Silicon [от лат. silicis — кремень]

атомный 117,

ковалентный 117

Германий Germanium [от лат. Germania — Германия]

3d 10 4s 2 4p 2

атомный 122,5,

ковалентный 122

Олово Tin [от англо-сакс. tin, лат. stannum]

4d 10 5s 2 5p 2

атомный 140,5,

ковалентный 140

Свинец Lead [от англо-сакс. lead, лат. plumbum]

4f 14 5d 10 6s 2 6р 2

атомный 175,

ковалентный 154

Все элементы этой группы образуют соединения со степенью окисления +4. Устойчивость этих соединений уменьшается при перемещении к нижней части группы, когда как у двухвалентных соединений она, наоборот, при таком перемещении возрастает. Все элементы, кроме Si , образуют также соединения с валентностью +2, что обусловлено «эффектом инертной пары »: втягиванием пары внешних s -элементов во внутреннюю электронную оболочку вследствие худшего экранирования внешних электронов d - и f -электронами по сравнению с s - и р -электронами внутренних оболочек у крупных атомов нижних членов группы.

Свойства элементов этой группы позволили использовать их в качестве противоводорослевых покрытий (ПП) судов. В первых таких покрытиях использовали Pb , затем стали применять Sn (в виде бис-трибутилового оловоорганического радикала, связанного с углеродным полимером). Из экологических соображений в 1989 г. использование в ПП этих, а также других токсичных металлов (Hg, Cd, As ) запретили, заменив на ПП на основе кремнийорганических полимеров.

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 14 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

обычно нетоксичен, но в виде СО и цианидов CN очень токсичен

(0,03-4,09)х10 -4

Нетоксичен

(0,07-7)х10 -10

Нетоксичен

(2,3-8,8)х10 -10

(0,33-2,4)х10 -4

ТД 2 г, ЛД нд, некоторые оловоорганич. соединения очень токсичны

(0,23-3,3)х10 -4

ТД 1 мг, ЛД 10 г

Углерод (С) - отличается от всех других элементов так называемой катенацией , то есть способностью образовывать соединения, в которых его атомы связаны друг с другом в длинные цепи или кольца. Это свойство объясняет образование миллионов соединений, называемых органическими , которым посвящен отдельный раздел химии - органическая химия .

Способность углерода к катенации объясняется несколькими особенностями:

Во-первых, прочностью связи С - С . Так, средняя энтальпия этой связи составляет около 350 кДж/моль, тогда как энтальпия связи Si - Si — только 226 кДж/моль.

Во-вторых, уникальной способностью атомов углерода к гибридизации : образованию 4 3 -орбиталей с тетраэдрической ориентацией (обеспечивающих формирование простых ковалентных связей), или 3 2 -орбиталей, ориентированных в одной плоскости (обеспечивающих образование двойных связей), или 2 -орбиталей с линейной ориентацией (обеспечивающих образование тройных связей).

Таким образом, углерод может образовывать 3 типа координационного окружения: линейную у двух- и трехатомных молекул, когда КЧ элемента равно 2, плоскотреугольную у молекул графита, фуллеренов, алкенов, карбонильных соединений, бензольного кольца, когда КЧ равно 3, и тетраэдрическую у алканов и их производных с КЧ = 4.

В природе углерод встречается в виде аллотропных, то есть различных структурных форм (графит, алмаз, фуллерены), а также в виде известняка и углеводородного сырья (угля, нефти и газа). Используется в виде кокса при выплавке стали, сажи в полиграфии, активированного угля при очистке воды, сахара и т.п.

В 2010 г. присуждена Нобелевская премия по физике за изучение уникальной формы С - графена . Лауреатам - выходцам из России - А. Гейму и К. Новосёлову удалось получить этот материал из графита. Он представляет собой двумерный кристалл, то есть похож на сетку из атомов С толщиной в один атом , волнообразной структуры , что обеспечивает устойчивость кристалла. Его свойства очень многообещающие: он является самым тонким прозрачным материалом из всех ныне известных, притом чрезвычайно прочным (примерно в 200 раз прочнее стали), обладает электро- и теплопроводностью. При комнатной температуре его электрическое сопротивление самое минимальное среди всех известных проводников. В недалёком будущем на основе графена будут созданы сверхскоростные компьютеры, плоскопанельные экраны и солнечные батареи, а также чувствительные газовые детекторы, реагирующие на несколько молекул газа. Не исключены и другие сферы его использования.

В форме оксида (СО ) и цианидов (СN -) углерод очень токсичен, поскольку нарушает процессы дыхания. Механизмы биологического действия у этих соединений разные. Цианид ингибирует дыхательный фермент цитохромоксидазу , быстро связываясь с Си — активным центром фермента, блокируя электронный поток на конечном участке дыхательной цепи. СО , будучи основанием Льюиса, связывается с атомом Fe в молекуле гемоглобина прочнее, чем O 2 , образуя карбонилгемоглобин , лишенный способности связывать и переносить O 2 . Способность СО образовывать координационные связи с d -металлами в низких степенях окисления приводит к образованию многообразных карбонильных соединений. Например, Fe в очень ядовитом веществе — пситакарбопиле Fe (CO ) 5 — имеет нулевую степень окисления, а в комплексе [Fe (CO ) 4 ] 2- — степень окисления -2 (рис. 1).

Рис. 1.

Стабилизация атома металла в низкой степени окисления в комплексах с СО объясняется способностью углерода выступать благодаря структуре низко расположенных р *-орбиталей в роли акцепторного лиганда . Эти орбитали перекрываются с занятыми орбиталями металла, образуя координационную р -связь, в которой металл выступает донором электронов. Это одно из немногих исключений из общего правила образования КС, где акцептором электронов является металл.

Нет смысла описывать свойства углерода более подробно, поскольку при многоэлементном анализе его, как правило, не только не определяют, но и считают его примесь в образце нежелательной и подлежащей максимальному удалению при пробоподготовке. При оптическом эмиссионном анализе он даёт очень широкий спектр, повышая шумовой фон и снижая тем самым предел чувствительности обнаружения определяемых элементов. При масс-спектрометрии органические молекулы образуют большое количество осколков молекул с разной молекулярной массой, дающих значительные помехи при анализе. Поэтому в подавляющем большинстве случаев все углеродсодержащие вещества при пробоподготовке удаляют.

Кремний (Si) — полуметалл. При восстановлении кремнезема (SiО 2) углеродом образуется черный аморфный Si . Кристаллы Si высокой чистоты напоминают серо-голубой металл. Кремний применяют в полупроводниках, сплавах и полимерах. Он важен для некоторых форм жизни, например, для построения оболочек у диатомовых водорослей; возможно, имеет значение и для организма человека. Некоторые силикаты канцерогенны, некоторые вызывают силикоз.

Во всех соединениях Si четырехвалентен, образует химические связи ко-валентного характера. Наиболее распространен диоксид SiO 2 . Несмотря на химическую инертность и нерастворимость в воде, при попадании в организм может образовывать кремниевые кислоты и кремнийорганические соединения с неявно выраженными биологическими свойствами. Токсичность SiO 2 зависит от дисперсности частиц: чем они мельче, тем токсичнее, хотя корреляции между растворимостью различных форм SiO 2 и силикогенностью не наблюдается. Связь токсичности кремниевых кислот именно с Si доказывает полная инертность пыли алмаза той же дисперсности.

В последнее время отмечено, что в биосредах кремниевые кислоты участвуют в формировании гидроксилалюмосиликатов , причем это явление нельзя объяснить ни связью Si-С , ни связью Si-О-С . По мере расширения промышленного использования Аl и его соединений посредством алюмосиликатов Аl все шире вовлекается во множество биохимических реакций. В частности, функциональные кислород- и фторсодержащие группы легко образуют высокоустойчивые комплексные соединения с Аl , извращая их метаболизм.

Наиболее изучены среди кремнийорганических соединений силиконы — полимеры, скелет молекулы которых состоит из чередующихся связанных между собой атомов Si и O 2 . К атомам Si в силиконах присоединены алкильные или арильные группы. Наличие Si в кремнийорганических соединениях кардинально меняет свойства веществ, когда они его не содержат. Например, обычные полисахариды можно выделить и очистить с помощью крепкого этанола, который осаждает полисахарид из раствора. Кремнийсодержащие углеводы, напротив, не осаждаются даже в 90% этаноле. Классификация кремнийорганических соединений представлена в табл. 3.

Таблица 3. Кремнийорганические полимеры

Название и структура

Примечание

Состоят только из Si . Энергия связи у углеродной цепи С - С равна 58,6, а у Si - Si 42,5 ккал/моль, и поэтому полиорганосиланы неустойчивы.

Энергия связи Si - О 89,3 ккал/моль. Поэтому эти полимеры прочны, устойчивы к температуре и окислительной деструкции. Этот класс полимеров очень разнообразен по строению. Линейные полисилаксаны широко применяют как синтетические эластичные и термостойкие каучуки.

В основной цепи атомы Si разделены цепочками из углеродных атомов.

В основной цепи имеются силоксановые группы, разделенные углеродными цепочками.

Основная цепь состоит из атомов С , а атомы Si содержатся в боковых группах или ответвлениях.

Макромолекулярные цепи включают атомы Si, О и металлов, где М = Al, Ti, Sb, Sn, В .

Наиболее вероятным механизмом развития силикоза считают разрушение фагоцитов, захвативших частицы SiO 2 . При взаимодействии с лизосомами кремниевые частицы разрушают лизосомы и саму клетку-фагоцит, вызывая выделение ферментов и осколков молекул органелл. Они взаимодействуют с другими фагоцитами, то есть запускается цепной процесс гибели фагоцитов. Если в клетке имеется некоторое количество кремниевых кислот, этот процесс ускоряется. Скопление погибших макрофагов инициирует выработку в окружающих фибробластах коллагена, вследствие чего в очаге развивается склероз.

Коллоидная кремниевая кислота является мощным гемолитиком, изменяет соотношение сывороточных белков, ингибирует ряд дыхательных и тканевых ферментов, нарушает метаболизм многих веществ, в том числе фосфора. В последнее время большое внимание уделяют силилиевым ионам (R 3 Si +). В них проявляется уникальная способность атома Si расширять свою координационную сферу, в виде повышения его электрофильности. Он взаимодействует с любыми нуклеофилами, включая ионы противоположного заряда (в том числе и реакционноспособные промежуточные метаболические продукты) и молекулы растворителя. Поэтому в конденсированных фазах они становятся «неуловимыми» и выявить их оказывается сложно (Кочина с соавт., 2006).

Кремнийорганические полимеры (КОП) вначале применяли в качестве противоводорослевых самополирующихся покрытий корпуса судов (Цукерман, Рухадзе, 1996). Однако затем были предложены разнообразные способы применения КОП в других отраслях народного хозяйства, в частности, в медицине в качестве прочных протезов костей.

Германий (Ge) — амфотерный полуметалл; при сверхвысокой чистоте выглядит как хрупкие кристаллы серебристо-белого цвета. Применяется в полупроводниках, сплавах и специальных стеклах для инфракрасной оптики. Считается биологическим стимулятором. В соединениях проявляет степень окисления +2 и +4.

Всасывание двуокиси и галогенидов Ge в кишечнике слабое, но в виде германатов M 2 GeO 4 несколько улучшается. С белками плазмы германий не связывается, и распределяется между эритроцитами и плазмой в соотношении примерно 2:1. Быстро (время полувыведения около 36 ч) выводится из организма. В целом малотоксичен.

Олово (Sn) — мягкий, пластичный металл. Используется в смазках, сплавах, припое, как добавка к полимерам, в составе красок для противообрастающих покрытий, в составе высокоядовитых для низших растений и животных летучих оловоорганических соединений. В виде неорганических соединений нетоксичен.

Имеет два энантиотропа , «серое» (б) и «белое» (в) олово, то есть разные аллотропные формы, устойчивые в определенном диапазоне условий. Температура перехода между этими формами при давлении 1 атм. равна 286,2°К (13,2°С). Белое олово имеет искаженную структуру серой модификации с КЧ = 6 и плотностью 7,31 г/см 3 . Оно стабильно в обычных условиях, а при пониженной температуре медленно преобразуется в форму, имеющую алмазоподобную структуру с КЧ = 4 и плотностью 5,75 г/см 3 . Подобное изменение плотности металла в зависимости от температуры среды встречается крайне редко и может вызывать драматические последствия. Например, в условиях холодных зим разрушались оловянные пуговицы на мундирах солдат, а в 1851 г. в церкви г. Зейца оловянные трубы органа превратились в порошок.

В организме откладывается в печени, почках, костях, мышцах. При отравлении оловом снижается эритропоэз, что проявляется уменьшением показателей гематокрита, гемоглобина и числа эритроцитов. Отмечено также ингибирование дегидратазы 5-аминолевулината , одного из ферментов цепи биосинтеза гема, а также печеночных ферментов глутатионредуктазы и дегидрогеназ глюкозо-6-фосфата , лактата и сукцината . По-видимому, Sn выводится из организма в составе комплексов с SH -содержащими субстратами.

Свинец (Pb) — мягкий, ковкий, пластичный металл. Во влажном воздухе покрывается оксидной пленкой, устойчив к действию кислорода и воды. Используется в аккумуляторах, производстве кабелей, красок, стекла, смазок, бензина и средств защиты от радиации. Является токсичным металлом 1 группы опасности, так как накапливается в организме в костной ткани с нарушением функции почек и сердечнососудистой системы. В развитых странах его содержание контролируется при обязательной диспансеризации населения. Вызывает разнообразные заболевания.

Медицинская бионеорганика. Г.К. Барашков

Общая характеристика элементов главной подгруппы IV группы Общая электронная формула. . . ns 2 p 2. Элементы имеют четыре валентных электрона. В своих соединениях могут проявлять степени окисления от +4 до -4. В подгруппе наблюдается резкое изменение свойств элементов: углерод и кремний типичные неметаллы, германий - полуметалл, олово и свинец – металлы. С возрастанием радиуса атома от углерода к свинцу металлические свойства усиливаются, и более характерной становится низшая степень окисления. Для C, Si, Ge характерной является степень окисления +4. Для Sn и Pb +2. Устойчивые водородные соединения имеет только углерод, для свинца водородные соединения неизвестны.

Углерод Природные соединения Входит в состав многих минералов, органических соединений и встречается в свободном состоянии (алмаз, графит, уголь). Известны четыре аллотропные модификации углерода: алмаз, графит, карбин, фуллерен C 60. Его следующим устойчивым гомологом является C 70, за которым следуют C 76, C 78 , C 82, C 84, C 90, C 94, C 96 и т. д C 540. В основе строения их молекул лежит одно из следствий теоремы Эйлера, которое говорит о том, что для выстилания сферической поверхности необходимо n шестиугольников и 12 пятиугольников, за исключением n = 1. Графит – черный, мягкий Алмаз – бесцветный, прозрачный, очень твердый. Алмаз имеет тетраэдрическую кристаллическую решетку, кристаллическая решетка графита – многоплоскостная структура. Мелкодисперсный графит (сажа) носит название аморфный углерод. Из графита так же можно получить алмаз путем нагревания графита до 1500 – 2000 С под давлением до 500 тыс. атм.

Химические свойства 1. Углерод достаточно инертен. При нагревании до 800 – 900 С вступает в реакции с неметаллами и металлами: 2 C + N 2 = C 2 N 2 (циан или дициан) C + Si = Si. C (карборунд); C + O 2 = CO 2 3 C + 4 Al = Al 4 C 3 (карбид алюминия) C + 2 S = CS 2 (сероуглерод) 2. С кислородом углерод образует два оксида (CO и CO 2). СО - оксид двухвалентного углерода (угарный газ): без цвета и запаха, ядовит, получается при неполном сгорании угля. В лабораторных условиях можно получить обезвоживанием муравьиной кислоты серной кислотой.

СО – хороший восстановитель и используется для получения металлов из оксидов: Cu. O + CO = Cu + CO 2 СО легко вступает в реакции присоединения: CO + Cl 2 = COCl 2 (фосген) CO + S = COS (тиооксид углерода) Молекулы СО – могут выступать в роли лигандов в карбонильных комплексах: Ni + 4 CO = Карбонильные комплексы - ядовитые жидкости; широко используются для получения чистых металлов.

При температуре 1000 С с аммиаком образует карбамид (мочевина): СO 2 + 2 NH 3 = CO(NH 2)2 + H 2 O + СО 2 СO 2 является кислотным оксидом угольной кислоты: CO 2 + H 2 O = H 2 CO 3 кислота очень слабая и нестойкая. Кислые соли (гидрокарбонаты) можно получить по реакции: Ca. CO 3 + CO 2 + H 2 O = Ca(HCO 3)2 Соли (кроме солей щелочных металлов) угольной кислоты термически нестойки: Zn. CO 3 = Zn. O + CO 2

3. При пропускании через раскаленный уголь паров серы образуется маслянистая жидкость сероуглерод CS 2 CS 2 - является ангидридом тиоугольной кислоты, которая получается косвенным путем: CS 2 + Na 2 S = Na 2 CS 3 Na 2 CS 3 + 2 HCl = H 2 CS 3 + 2 Na. Cl Эта кислота является исходным веществом для получения монотиоугольной кислоты H 2 CO 2 S и дитиоугольной кислоты H 2 CO 2 S 2, которые используются для получения искусственного шелка. 4. С азотом углерод образует дициан, газ с запахом миндаля, хорошо растворимый в воде: 2 C + N 2 = (CN)2; (CN)2 + 4 H 2 O = (NH 4)2 C 2 O 4 При взаимодействии дициана со щелочами образуются два ряда солей цианиды и цианаты: (CN)2 + 2 KOH = KCN + KNCO + H 2 O KCN – соль цианистоводородной кислоты (цианид калия), KNCO – соль циановой кислоты (цианат калия).

5. При взаимодействии углерода с металлами образуются карбиды – состава Me 2 C 2, Me 4 C 3, Me 3 C, которые делятся на неразлагаемые и разлагаемые: Ca. C 2 + 2 H 2 O = Ca(OH)2 + C 2 H 2 Al 4 C 3 + 12 HCl = 4 Al. Cl 3 + 3 CH 4 Mn 3 C + 6 H 2 O = 3 Mn(OH)2 + CH 4 + H 2

ПРИМЕНЕНИЕ Смешанные галогениды CCl 2 F 2, CCl 3 F, CBr 3 F называются фреонами и используются в качестве хладагентов в холодильной технике. Применение СО 2: как инертная атмосфера при сварке металлов; в пищевой промышленности. Na. HCO 3, NH 4 HCO 3 – в хлебопекарном производстве. Na 2 CO 3, Ca. CO 3 - в производстве моющих средств, стекла.

Кремний Кремний в природе содержится во многих минералах в виде оксида Si. O 2, из которого элементарный кремний можно получить восстановлением магнием или углеродом. В чистом виде кремний тверд, хрупок, имеет алмазоподобную структуру. Различают аморфный и кристаллический кремний.

Химические свойства 1. Кремний очень инертен. При высоких температурах взаимодействует с фтором, углеродом, некоторыми металлами: Si + 2 F 2 = Si. F 4; Si + C = Si. C (карборунд); Si + 2 Mg = Mg 2 Si (силицид). 2. Хорошо растворяется в щелочах и плавиковой кислоте: Si + 4 Na. OH = Na 4 Si. O 4 + 2 H 2 Si + 4 HF = Si. F 4 + 2 H 2 Si. F 4 + 2 HF = H 2 3. Оксид кремния полимер, Si. O 2 образует многочисленные поликремниевые кислоты. Растворяется в плавиковой кислоте и щелочах: Si. O 2 + 4 HF = Si. F 4 + 2 H 2 O

4. Непосредственно с водородом кремний не взаимодействует, поэтому водородные соединения (силаны) получают из силицидов: Mg 2 Si + 4 HCl = 2 Mg. Cl 2 + Si. H 4 (моносилан) Силаны могут быть различного состава Si 2 H 6, Si 3 H 8, Si 6 H 14 , . . . Это сильные восстановители, химически очень активны, на воздухе самовоспламеняются: Si. H 4 + 2 O 2 = Si. O 2 + 2 H 2 O

Применение Si. O 2 - твердое вещество с температурой плавления 1715 С. Идет на изготовление химической посуды, кварцевых ламп и т. п. Na 2 Si. O 3 – силикат натрия (жидкое стекло, конторский клей) Кристаллический кремний - подложка, основа полупроводниковых приборов. При прокаливании кремневой кислоты образуется Si. O 2 в виде аморфного соединения, носит название “силикагель” и используется в качестве поглотителя влаги.

Германий, олово, свинец. Природные соединения Sn. O 2 – кассеперит, Pb. S – свинцовый блеск. Германий собственных руд не имеет, встречается с рудами цинка, олова, свинца. Олово и свинец получают пирометаллургическим способом: олово - восстановлением углеродом из оксида, свинец - обжигом сульфида в кислороде, и восстановлением оксидом углерода (II) до металла. Германий получают более сложным способом: вначале получают четыреххлористый германий Ge. Cl 4 Ge. Cl 4 + H 2 O = Ge. O 2 + 4 HCl Ge. O 2 + 2 H 2 = Ge + 2 H 2 O

Германий и олово – белые блестящие металлы на воздухе окисляются слабо. Свинец – серого цвета за счет пленки оксида. Олово полиморфно. При температуре > +13 С устойчива βмодификация. С понижением температуры βолово переходит в α- модификацию. Этот переход начинается при +13 С и очень быстро протекает при -33 С, в результате олово превращается в порошок. Это явление носит название “оловянная чума”.

Химические свойства 1. При нагревании реагируют с неметаллами. 2 Pb + O 2 = 2 Pb. O; Ge + 2 S = Ge. S 2; Sn + 2 Cl 2 = Sn. Cl 4 3. Германий и олово с водой не взаимодействуют. Свинец медленно растворяется в воде: 2 Pb + O 2 + 2 H 2 O = 2 Pb(OH)2 4. В ряду активности Ge стоит между Cu и Ag, т. е. после водорода, а Sn и Pb до водорода. Олово слабо вытесняет водород: Sn + H 2 SO 4 (pазб) = Sn. SO 4 + H 2 Аналогичные реакции со свинцом практически не идут, т. к. Pb. Cl 2 и Pb. SO 4 плохо растворимы.

Свинец и олово взаимодействуют аналогично (в концентрированной cвинец пассивируется): 3 Pb + 8 HNO 3 (разб) = 3 Pb(NO 3)2 + 2 NO + 4 H 2 O Олово и германий взаимодействуют с концентрированной азотной кислотой: Sn + 4 HNO 3 = H 2 Sn. O 3 + 4 NO 2 + H 2 O 5. Все три элемента взаимодействуют со щелочами (германий в присутствии окислителя): Sn + 2 Na. OH + 2 H 2 O = Na 2 + H 2 Ge + 2 Na. OH + 2 H 2 O 2 = Na 2

Применение Ge – как полупроводниковый материал, Sn и Pb в основном в виде сплавов (бронзы, баббиты), Sn – в качестве защитного покрытия от коррозии, Pb 3 O 4 – как краситель, Pb(C 2 H 5)4 (тетраэтилсвинец) – добавка в бензин (антидетонатор).

Элементы побочной подгруппы IV группы -. В природе встречаются в виде минералов: Fe. Ti. O 3 – ильменит, Ti. O 2 – рутил, Zr. Si. O 4 – циркон. Hf своих руд не имеет, встречается в рудах циркония, железа, марганца. Ti получают пирометаллургическим способом из Ti. Cl 4 или Ti. O 2: Ti. O 2 + 2 Mg = Ti + 2 Mg. O Очистка титана от примесей обычно проводится газотранспортным методом: Ti + 2 J 2 → Ti. J 4 → Ti + 2 J 2 Цирконий и гафний получают электролизом расплавов их солей.

Чистые металлы вязкие, ударопрочные, с высокими температурами плавления (Ti – 1700 С, Zr – 1900 С, Hf – 2200 С). Ti относится к легким металлам, плотность его 4, 5 г/см 3. Химически наиболее активен титан. Цирконий и гафний менее активны.

Химические свойства 1. Характерные степени окисления в соединениях для Ti +4, +3; для Zr и Hf +4. При нагревании все три элемента активно взаимодействуют с различными неметаллами: Zr + C = Zr. C; Hf + 2 S = Hf. S 2; 2 Ti + N 2 = 2 Ti. N; Ti + 2 Cl 2 = Ti. Cl 4 2. С кислотами Ti, Zr и Hf взаимодействуют плохо. Лишь титан растворяется в азотной кислоте: Ti + 4 HNO 3 = H 2 Ti. O 3 + 4 NO 2 + H 2 O

Цирконий и гафний взаимодействуют только с “царской водкой”: 3 Hf + 18 HCl + 4 HNO 3 = 3 H 2 + 4 NO + 8 H 2 O 3. Оксиды Ti. O 2 – амфотерный, Zr. O 2 – слабоамфотерный, Hf. O 2 – основный. 4. При взаимодействии с серной кислотой оксиды образуют соответствующие сульфаты, которые быстро гидролизуются до сульфата титанила, цирконила, гафнила: Ti. O 2 + 2 H 2 SO 4 = Ti(SO 4)2 + 2 H 2 O Ti(SO 4)2 + H 2 O = Ti. OSO 4 + H 2 SO 4 У амфотерного Ti. O 2 более выражена кислотная функция. Соответствующая ему метатитановая кислота H 2 Ti. O 3 существует в двух модификациях α и β. Общая формула титановых кислот x. Ti. O 2 · y. H 2 O.

Применение Титан – третий по значимости (после железа и алюминия) конструкционный материал. Титан применяется в виде сплавов в корабле, ракето-, машиностроении. Цирконий и гафний применяются в ядерном реакторостроении (цирконий для оболочек тепловыделяющих элементов, гафний – регулирующие стержни для поглощения нейтронов при работе реактора).

К элементам главной подгруппы IV группы относятся углерод (С), кремний (Si), германий (Ge), олово (Sn) и свинец (Pb). В ряду элементы настолько отличаются по своей химической природе, что при изучении их свойств целесообразно производить разбиение на две подгруппы: углерод и кремний составляют подгруппу углерода, германий, олово, свинец - подгруппу германия.


Общая характеристика подгруппы

Сходство элементов:


Одинаковая структура внешнего электронного слоя атомов ns 2 nр 2 ;


Р-элементы;


Высшая С.О. +4;


Типичные валентности II, IV.

Валентные состояния атомов

Для атомов всех элементов возможны 2 валентных состояния:


1. Основное (невозбужденное) ns 2 np 2


2. Возбужденное ns 1 np 3

Простые вещества

Элементы подгруппы в свободном состоянии образуют твердые вещества, в большинстве случаев - с атомной кристаллической решеткой. Характерна аллотропия


Как физические, так и химические свойства простых веществ существенным образом различаются, причем вертикальные изменения часто имеют немонотонный характер. Обычно подгруппу делят на две части:


1 - углерод и кремний (неметаллы);


2 - германий, олово, свинец (металлы).


Олово и свинец являются типичными металлами, германий, как и кремний, - полупроводники.

Оксиды и гидроксиды

Низшие оксиды ЭО

CO и SiO - несолеобразующие оксиды


GeO, SnO, PbO - амфотерные оксиды

Высшие оксиды ЭО +2 О

CO 2 и SiO 2 - кислотные оксиды


GeO 2 , SnO 2 , PbO 2 - амфотерные оксиды


Существуют многочисленные гидроксопроизводные типа ЭО nН 2 O и ЭO 2 nН 2 O, которые проявляют слабокислотные или амфотерные свойства.

Соединения с водородом ЭН 4

Ввиду близости значений ЭО связи Э-Н являются ковалентными, малополярными. Гидриды ЭН 4 при обычных условиях представляют собой газы, плохо растворимые в воде.


СН 4 - метан; SiH 4 - силан; GeH 4 - герман; SnH 4 - станнан; PbH 4 - не получен.


Прочность молекул ↓


Химическая активность


Восстановительная способность


Метан химически малоактивен, остальные гидриды очень реакционноспособны, они полностью разлагаются водой с выделением водорода:


ЭН 4 + 2Н 2 O = ЭO 2 + 4Н 2


ЭН 4 + 6Н 2 O = Н 2 [Э(ОН) 6 ] + 4Н 2

Способы получения

Гидриды ЭН 4 получают косвенным путем, так как прямой синтез из простых веществ возможен только в случае СН 4 , но и эта реакция протекает обратимо и в очень жестких условиях.


Обычно для получения гидридов используют соединения соответствующих элементов с активными металлами, например:


Аl 4 С 3 + 12Н 2 O = ЗСН 4 + 4Al(OH) 2


Mg 2 Si + 4HCl = SiH 4 + 2MgCl 2

Углеводороды, кремневодороды, германоводороды.

Углерод с водородом, кроме СН 4 , образует бесчисленное множество соединений С x Н y - углеводородов (предмет изучения органической химии).


Получены также кремневодороды и германоводороды общей формулы Э n Н 2n+2 . Практического значения не имеют.


По значимости 2 элемента главной подгруппы IV группы занимают особое положение. Углерод является основой органических соединений, следовательно - главным элементом живой материи. Кремний - главный элемент всей неживой природы.

На рис. 15.4 показано расположение в периодической таблице пяти элементов IV группы. Подобно элементам III группы, они принадлежат, к числу p-элементов. Атомы всех элементов IV группы имеют однотипную электронную конфигурацию внешней оболочки: . В табл. 15.4 указаны конкретная электронная конфигурация атомов и некоторые свойства элементов IV группы. Эти и другие физические и химические свойства элементов IV группы связаны с их строением, а именно: углерод (в форме алмаза), кремний и германий имеют каркасную кристаллическую алмазоподобную структуру (см. разд. 3.2); олово и свинец имеют металлическую структуру (гранецентрированную кубическую, см. также разд. 3.2).

Рис. 15.4. Положение элементов IV группы в периодической системе.

При перемещении вниз по группе происходит возрастание атомного радиуса элементов и ослабление связи между атомами. Из-за последовательно усиливающейся делокализации электронов внешних атомных оболочек в этом же направлении пррисходит и возрастание электропроводности элементов IV группы. Их свойства

Таблица 15.4. Электронные конфигурации и физические свойства элементов IV группы

постепенно изменяются от неметаллических к металлическим: углерод - неметаллический элемент и в форме алмаза является изолятором (диэлектриком); кремний и германий - полупроводники; олово и свинец - металлы и хорошие проводники.

Из-за возрастания размера атомов при переходе от элементов верхней части группы к элементам ее нижней части происходит последовательное ослабление связи между атомами и, соответственно этому, уменьшение температуры плавления и температуры кипения, а также твердости элементов.

Аллотропия

Кремний, германий и свинец существуют каждый лишь в одной структурной форме. Однако углерод и олово существуют в нескольких структурных формах. Различные структурные формы одного элемента называются аллотропами (см. разд. 3.2).

Углерод имеет два аллотропа: алмаз и графит. Их структура описана в разд. 3.2. Аллотропия углерода - пример монотропии, для которой характерны следующие особенности: 1) аллотропы могут существовать в определенном интервале температур и давлений (например, как алмаз, так и графит существуют при комнатной температуре и атмосферном давлении); 2) не существует температуры перехода, при которой один аллотроп превращается в другой; 3) один аллотроп более устойчив, чем другой. Например, графит обладает большей устойчивостью, чем алмаз. Менее устойчивые формы называются метастабилъными. Следовательно, алмаз представляет собой метастабильный аллотроп (или монотроп) углерода.

Углерод может еще существовать в других формах, к которым относятся древесный уголь, кокс и газовая сажа. Все они являются неочищенными формами углерода. Иногда их называют аморфными формами, а раньше считали, что они представляют собой третью аллотропную форму углерода. Термин аморфный означает бесформенный. В настоящее время установлено, что «аморфный» углерод-это не что иное, как микрокристаллический графит.

Олово существует в трех аллотропных формах. Они называются: серое олово (а-олово), белое олово (Р-олово) и ромбическое олово (у-олово). Аллотропия такого типа, как у олова, называется энантиотропией. Она характеризуется следующими особенностями: 1) превращение одного аллотропа в другой происходит при определенной температуре, называемой температурой перехода; например

Структура влмаза Металлическая (полупроводник) структура 2) каждый аллотроп устойчив только в определенном интервале температур.

Реакционная способность элементов IV группы

Реакционная способность элементов IV группы в целом возрастает при перемещении к нижней части группы, от углерода к свинцу. В электрохимическом ряду напряжений только олово и свинец расположены выше водорода (см. разд. 10.3). Свинец очень медленно реагирует с разбавленными кислотами, высвобождая водород. Реакция между оловом и разбавленными кислотами протекает с умеренной скоростью.

Углерод окисляется орячими концентрированными кислотами, например концентрированной азотной кислотой и концентрированной серной кислотой.

IV группа главная подгруппа

Применение

Германий широко используется как полупро­водник. Почти половина производимого олова идет на из­готовление жести, главным потребителем которой является производство консервов. Значительное количество олова рас­ходуется на получение сплавов – бронзы (медь + 10 – 20% Sn). Оксид олова (IV) применяется для изготовления полупроводни­ковых сенсоров. Химические полупроводниковые сенсоры – чувствительные элементы на основе SnО 2 , In 2 O 3 , ZnO, TiO, преобразующие энергию химического процесса в электри­ческую. Взаимодействие определяемого газа (О 2 , СО, NО 2) с чувствительным материалом сенсора вызывает обратимое изменение его электропроводности, которое регистрируется электронным устройством.

К элементам IV (14 по новой номенклатуре ЮПАК) группы главной подгруппы относятся: углерод С, кремний Si, германий Ge, олово Sn, свинец Pb.

В основном состоянии атомы пниктогенов имеют электронную конфигурацию внешнего энергетического уровня – …ns 2 np 2 , где n – главное квантовое число (номер периода). Для атомов элементов IV группы главной подгруппы характерны следующие степени окисления: для углерода – (–4, 0, +2, +4); для кремния – (–4, 0, (+2), +4); для германия – ((–4), 0, +2, +4); для олова – (0, +2, +4), для свинца – (0, +2, +4).

Устойчивость соединений с высшей степенью окисления +4 максимальна для кремния и понижается в ряду Ge – Sn – Pb. Это объясняется тем, что затраты энергии на перевод электрона с s на p подуровень не компенсируются энергией образующихся химических связей. Устойчивость соединений со степенью окисления +2 возрастает.

В табл. 1 представлены основные свойства IV (14) группы главной подгруппы.

Свойство С Si Ge Sn Pb
Заряд ядра
Электронная конфигурация внешнего энергетического уровня в основном состоянии …2s 2 2p 2 …3s 2 3p 2 …4s 2 4p 2 …5s 2 5p 2 …6s 2 6p 2
Орбитальный радиус, пм
Энергия ионизации , эВ 11,26 8,15 7,90 7,34 7,42
Энергия сродства к электрону, , эВ 1,26 1,38 1,2 1,2
Температура плавления, ºС 3300 (субл.)
Температура кипения, ºС
Электроотрицательность: по Полингу по Оллреду-Рохову 2,55 2,50 1,90 1,74 2,01 2,02 1,96 1,72 2,33 1,55

В IV группе главной подгруппе сверху вниз орбитальный радиус увеличивается. Неравномерное изменение радиуса при переходе от Si к Ge и от Sn к Pb обусловлено эффектами d и f-сжатия. Электроны 3d и 4f-подуровней слабо экранируют заряд ядер атомов. Это приводит к сжатию электронных оболочек германия и свинца из-за повышения эффективного заряда ядра.



В IV группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус также увеличивается, энергия ионизации уменьшается, восстановительные свойства атомов возрастают.

Углерод отличается от других атомов элементов IV группы главной подгруппы высоким значением энергии ионизации.

Атом углерода не имеет свободных d-орбиталей, валентные электроны атома углерода (... 2s 2 2p 2) слабо экранированы от действия ядра, что объясняет небольшой радиус атома углерода и высокие значения энергии ионизации и электроотрицательности.

В IV группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус увеличивается, энергия сродства к электрону уменьшается, окислительные свойства атомов уменьшаются.

Энергия сродства к электрону у атома углерода меньше, чем у атома кремния, что связано с небольшим радиусом атома углерода и сильным межэлектронным отталкиванием при присоединении электрона к атому.

В IV группе главной подгруппе сверху вниз энергия ионизации уменьшается, энергия сродства к электрону уменьшается, электроотрицательность уменьшается.

С изменением энергии ионизации свойства элементов IV группы главной подгруппы изменяются от типичных неметаллов к металлам. Углерод и кремний – типичные неметаллы, германий – металлоид с характерными металлическими свойствами, олово, свинец – металл.

В IV группе главной подгруппе сверху вниз температуры плавления и кипения уменьшаются.

Понижение температуры плавления обусловлено увеличением доли металлической связи.

В продолжение темы:
Биология

Большинство исследователей признает, что древнейшей формой религии Египта, насколько ее можно проследить по историческим памятникам, было почитание местных номовых...

Новые статьи
/
Популярные