Выделение водород из воды с помощью углерода и электрического тока. Получение водорода с использованием нанопорошка алюминия Получение водорода из алюминия и щелочи

Метод довольно прост и способен дать Вам водород довольно быстро.
берем слиток алюминия, наносим на него шарик ртути, той что используется в обыкновенных градусниках. Берем острый предмет, например нож и царапаем им алюминий прямо под шариком ртути, то есть вводим в ртуть кончик ножа и царапаем под ним алюминиевый слиток, после этой операции у нас под шариком ртути получиться амальгама, то есть сплав ртути с алюминием, когда мы царапаем алюминий, то мы срываем с него защитный слой оксида алюминия.

В обычных условиях, на открытом воздухе алюминий сразу покрывается тончайшей, но очень прочной оксидной пленкой, эта пленка и препятствует дальнейшему окислению алюминия. Но когда мы покрыли алюминий ртутью и под ней поцарапали алюминий, то мы содрав пленку позволили ртути создать сплав с алюминием, то есть ртуть тут же внедряется в кристаллическую решетку алюминия. Теперь самое главное. Оксидная пленка препятствует окислению, а вот то место где мы сделали амальгаму, там алюминий довольно активно будет окисляться кислородом воздуха с образованием белого порошка, так будет продолжаться пока весь слиток алюминия не окислиться. Если положить такой слиток в воду, то он будет очень активно окисляться и там, вытесняя из воды водород. реакция в воде протекает настолько бурно, что происходит взрыв.

Чтобы взрыва не было и чтобы можно было контролировать выход количества водорода, можно не класть слиток в воду, а продувать мимо такого слитка водяной пар, который будет окисляться до водорода, то есть алюминий будет отнимать у пара кислород, а водород будет побочным продуктом, который Вы запросто можете использовать в качестве топлива для авто.
Алюминий можно добывать повсюду, на свалках, на помойках, можно даже открыть нелегальный приемный пункт, в любом случае при всех затратах, этот метод окупиться с лихвой, это будет самое дешевое и легко добываемое топливо.

Представьте что у Вас на авто стоит некий герметичный бачок, который Вы можете открыть и бросить туда алюминиевую вилку, ложку или кастрюлю или кучу алюминиевых проводов, естественно вначале следует купить градусник и ртуть из него нанести на алюминий выше упомянутым способом. Для удобства можно плавить алюминиевый хлам и отливать из него компактные заготовки, потом создать на слитке хотя бы маленькую точку амальгамы, а после покрыть это место замазкой или скотчем, или просто положить в целлофановый пакет и плотно завязать его, чтобы не было реакции окисления. Вот такие заготовки потом Вы можете кидать в герметично закрывающийся бачок, потом подавать туда пар и получать на выходе чистый водород, который будет питать Ваше авто. метод взрыво безопасен, так как количество выделенного водорода зависит от количества поданного пара. распологать такой «реактор» можно непосредственно перед камерой куда будет впрыскиваться водород, чтобы выделяющийся водород, сразу же использовался не образуя больших взрывоопасных скоплений.
Этот метод вполне реален.
Кто не верит, читайте школьный учебник химии.

Водород уже достаточно давно рассматривается и кое-где используется в качестве экологически чистого вида топлива . Но более широкому использованию водородного топлива мешает целый ряд неразрешенных на сегодняшний день проблем, главными из которых являются хранение и транспортировка. Однако, группа исследователей из американской Армейской научно-исследовательской лаборатории, проводя эксперименты на Абердинском испытательном полигоне близ Мериленда, сделала случайное открытие. Пролив воду на брусок особого алюминиевого сплава, состав которого держится пока в секрете, исследователи заметили мгновенно начавшийся процесс бурного выделения водорода.

Из школьного курса химии, если кто его еще помнит, водород является побочным продуктом реакции между водой и алюминием. Однако, данная реакция обычно протекает лишь при достаточно высокой температуре или в присутствии специальных катализаторов. Да и тогда она идет достаточно "неторопливо", на заполнение бака водородного автомобиля потребуется около 50 часов, а энергетическая эффективность такого метода получения водорода не превышает 50 процентов.

Все вышесказанное не имеет отношения к реакции, в которой принимает участие новый сплав алюминия. "Эффективность этой реакции вплотную приближается к 100 процентам, а сама реакция "разгоняется" до максимальной производительности менее, чем за три минуты" - рассказывает Скотт Грендаль (Scott Grendahl), руководитель научной группы.

Использование системы, вырабатывающей водород по мере необходимости, решает массу имеющихся проблем. Воду и алюминиевый сплав легко транспортировать из одного места в другое, оба этих вещества сами по себе инертны и стабильны. Во-вторых, для начала реакции не требуется никакого катализатора, ни первоначального толчка, реакция начинает идти сразу же, как вода входит в контакт со сплавом.

Все вышесказанное еще не означает, что исследователи обнаружили панацею в области водородного топлива. В этом деле существует еще целый ряд вопросов, подлежащих выяснению или уточнению. Первым вопросом является то, будет ли работать такая схема получения водорода вне лаборатории, ведь существует множество примеров, когда экспериментальные технологии отлично работают в лабораторных условиях, но терпят полную неудачу при полевых испытаниях. Вторым вопросом является вопрос сложности и стоимости производства алюминиевого сплава, стоимость утилизации продуктов реакции, которые станут факторами, определяющим экономическую целесообразность нового способа получения водорода.

И в заключение следует отметить, что на выяснение упомянутых выше вопросов, скорее всего, уйдет не так уж и много времени. И только после этого можно будет сделать выводы о дальнейшей жизнеспособности нового метода получения водородного топлива.

«Водород генерируется только при необходимости, так что вы можете произвести его ровно столько, сколько нужно», - пояснил Вудалл на университетском симпозиуме, где описывались детали открытия. Данная технология может, например, применяться совместно с небольшими двигателями внутреннего сгорания в различных применениях – портативных аварийных генераторах, газонокосилках и пилах. Теоретически, она может быть использована и на легковых автомобилях и грузовиках.

Водород выделяется самопроизвольно, когда вода добавляется к шарикам, выполненным из сплава алюминия и галлия. «При этом алюминий в твердом сплаве реагирует с водой, отрывая от ее молекул кислород», - комментирует Вудалл. Соответственно, оставшийся водород выделяется в окружающее пространство.

Наличие галлия является критичным для прохождения реакции, так как он препятствует формированию пленки оксида на поверхности алюминия при его окислении. Такая пленка обычно предотвращает дальнейшее окисления алюминия, выступая в качестве барьера. Если же ее формирование окажется нарушенным, реакция будет идти до тех пор, пока не израсходуется весь алюминий.

Вудалл открыл данный процесс с жидким сплавом алюминия-галлия в 1967 году, когда он работал в полупроводниковой промышленности. «Я очищал тигель, содержавший сплав галлия и алюминия, - рассказывает он, - Когда я добавил туда воду, произошел сильный хлопок. После этого я удалился в лабораторию и в течение нескольких часов изучал, что же именно произошло».

«Необходимым компонентом является галлий, так как он плавится при низкой температуре и растворяет алюминий, что делает возможным реакцию последнего с водой. – поясняет Вудалл. – Это было неожиданным открытием, так как хорошо известно, что твердый алюминий не взаимодействует с водой».

Конечными продуктами реакции являются галлий и оксид алюминия. Сжигание же водорода приводит к образованию воды. «Таким образом, никаких токсичных выбросов не получается, - говорит Вудалл, - Важно отметить и то, что галлий не участвует в реакции, так что его можно утилизировать и использовать вновь. Это важно, так как сейчас этот металл намного дороже алюминия. Впрочем, если данный процесс начнет широко использоваться, то добывающая промышленность сможет выпускать более дешевый низкосортный галлий. Для сравнения, весь используемый сейчас галлий имеет высокую степень очистки и используется, главным образом, в полупроводниковой промышленности».

Вудалл говорит, что, так как водород может использоваться вместо бензина в двигателях внутреннего сгорания, возможно применение методики на автомобильном транспорте. Однако для того, чтобы технология смогла конкурировать с бензиновой, необходимо снизить стоимость восстановления оксида алюминия. «Сейчас стоимость одного фунта алюминия превышает $1, и поэтому вы не сможете получить количество водорода, эквивалентное бензину по цене $3 за галлон», - поясняет Вудалл.

Впрочем, стоимость алюминия может быть снижения, если он будет получаться из оксида с помощью электролиза, а электроэнергия для него будет идти с или . В этом случае алюминий может производиться прямо на месте, и отпадает необходимость в передаче электроэнергии, что снижает общие затраты. Кроме того, такие системы могут располагаться в удаленных районах, что особенно важно при постройке атомных электростанций. Данный подход, по мнению Вудалла, позволит уменьшить использование бензина, снизить загрязнение и зависимость от импорта нефти.

«Мы называем это водородной энергетикой на основе алюминия, - говорит Вудалл, - Причем не будет никаких сложностей, чтобы переделать двигатели внутреннего сгорания на работу от водорода. Все, что нужно – заменить их топливный инжектор на водородный».

Также система может применяться и для питания топливных ячеек. В этом случае она уже может конкурировать с бензиновыми двигателями – даже при сегодняшней высокой стоимости алюминия. «КПД систем на топливных элементах составляет 75%, тогда как двигателя внутреннего сгорания – 25%, - говорит Вудалл, - Таким образом, как только технология будет широко доступной, наша методика извлечения водорода станет экономически оправданной».

Ученые подчеркивают ценность алюминия для генерации энергии. «Большинство людей не догадывается, насколько много энергии заключено в нем, - поясняет Вудалл, - Каждый фунт (450 граммов) металла может дать 2 кВт*часа при сжигании выделившегося водорода, и еще столько же энергии в виде тепла. Таким образом, средний автомобиль с баком, заполненным шариками из сплава алюминия (около 150 кг) сможет проехать порядка 600 км, и это будет стоить $60 (при этом предполагается, что оксид алюминия затем будет утилизирован). Для сравнения, если я залью в бак бензин, то буду получать с каждого фунта 6 кВт*часов, что в 2.5 раза больше энергии от фунта алюминия. Другими словами, мне нужно будет в 2.5 раза больше алюминия, чтобы получить такое же количество энергии. Однако важно то, что я полностью исключаю бензин, и применяю вместо него дешевое вещество, доступное в США».

Изготовлен генератор, представляющий собой герметичную емкость с внутренним объемом 220 мл и отделяемой крышкой, в которой находятся герметичные, изолированные токоподводы-крепления для алюминия и газоотводная трубка для отвода водорода. В генератор заливают 200 г раствора поваренной соли концентрацией 17 Закрепляют к токоподводам-креплениям алюминиевые пластины площадью 13 см 2 каждая. Закрывают генератор крышкой, убедясь в герметичности. После чего подают напряжение на токоподводы. Для более быстрого удаления оксидной пленки с поверхности алюминия в начале подается напряжение до 1,5 В. После деструкции оксидной пленки понижают напряжение до рабочей величины. Для работы генератора выбран диапазон напряжений 0,3-1,5 В, так как при этих значениях напряжения характеристика G/W), выше, чем при больших или меньших значениях напряжения, что позволяет более рационально использовать электроэнергию, но генератор водорода может работать и в более широком диапазоне напряжений.

Предлагаемый способ можно реализовать более эффективно

Для увеличения выхода водорода при тех же значениях мощности можно применить многоэлектродную систему в одной ячейке три электрода между отрицательным и положительным электродами располагается пассивный электрод, и так две ячейки, получен более высокий результат. Также в качестве восстановителя можно использовать дисперсный алюминий, что позволяет повысить выход водорода.

В результате испытания генератора по методике примера 1 заливают в генератор с двумя алюминиевыми электродами 200 г морской воды. Полная площадь каждого электрода 13 см 2. В результате получены следующие результаты: выход водорода при 1,5 В 0,5 л/ч, выход относительно энергии при 1,5 В 0,52 Вт/ч.

При увеличении общей концентрации солей упариванием увеличивается выход водорода во времени и относительно затраченная энергия достигает максимума 16-23 солей морской воды. Данный способ позволяет обеспечить равномерное получение водорода и позволяет регулировать его выход с требуемым потребителю расходом.

Формула изобретения

Способ получения водорода, включающий взаимодействие алюминия с водным раствором галогенида щелочного или щелочноземельного металла, отличающийся тем, что, с целью обеспечения возможности регулирования выхода водорода, взаимодействие осуществляют при одновременном пропускании электрического тока через реакционную смесь сначала при напряжении 1,5 В, а после удаления оксидной пленки напряжение снижают до 0,3 В.

Получение водорода в домашних условиях

Способ 1. Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.

Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс. Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин. пока водород вытеснит воздух из сосуда.

Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

2Al + 2NaOH + 6h3O → 2Na + 3h3

Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

В колбу насыпаем немного сульфата меди, и соли. Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли. Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла. Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

Способ 3. Водород из цинка и соляной кислоты.

Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой. Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

Zn + 2HCl → ZnCl2 + h3

Способ 4. Производство водорода электролизом.

Пропускаем через раствор воды и проваренной соли электрический ток. При реакции, будет выделятся водород и кислород.

Водород уже достаточно давно рассматривается и кое-где используется в качестве экологически чистого вида топлива. Но более широкому использованию водородного топлива мешает целый ряд неразрешенных на сегодняшний день проблем, главными из которых являются хранение и транспортировка. Однако, группа исследователей из американской Армейской научно-исследовательской лаборатории, проводя эксперименты на Абердинском испытательном полигоне близ Мериленда, сделала случайное открытие. Пролив воду на брусок особого алюминиевого сплава, состав которого держится пока в секрете, исследователи заметили мгновенно начавшийся процесс бурного выделения водорода.

Из школьного курса химии, если кто его еще помнит, водород является побочным продуктом реакции между водой и алюминием. Однако, данная реакция обычно протекает лишь при достаточно высокой температуре или в присутствии специальных катализаторов. Да и тогда она идет достаточно "неторопливо", на заполнение бака водородного автомобиля потребуется около 50 часов, а энергетическая эффективность такого метода получения водорода не превышает 50 процентов.

Все вышесказанное не имеет отношения к реакции, в которой принимает участие новый сплав алюминия. "Эффективность этой реакции вплотную приближается к 100 процентам, а сама реакция "разгоняется" до максимальной производительности менее, чем за три минуты" - рассказывает Скотт Грендаль, руководитель научной группы.

Использование системы, вырабатывающей водород по мере необходимости, решает массу имеющихся проблем. Воду и алюминиевый сплав легко транспортировать из одного места в другое, оба этих вещества сами по себе инертны и стабильны. Во-вторых, для начала реакции не требуется никакого катализатора, ни первоначального толчка, реакция начинает идти сразу же, как вода входит в контакт со сплавом.

Все вышесказанное еще не означает, что исследователи обнаружили панацею в области водородного топлива. В этом деле существует еще целый ряд вопросов, подлежащих выяснению или уточнению. Первым вопросом является то, будет ли работать такая схема получения водорода вне лаборатории, ведь существует множество примеров, когда экспериментальные технологии отлично работают в лабораторных условиях, но терпят полную неудачу при полевых испытаниях. Вторым вопросом является вопрос сложности и стоимости производства алюминиевого сплава, стоимость утилизации продуктов реакции, которые станут факторами, определяющим экономическую целесообразность нового способа получения водорода.

И в заключение следует отметить, что на выяснение упомянутых выше вопросов, скорее всего, уйдет не так уж и много времени. И только после этого можно будет сделать выводы о дальнейшей жизнеспособности нового метода получения водородного топлива.

Источники: www.ntpo.com, all-he.ru, h3-o.sosbb.net, 505sovetov.ru, dailytechinfo.org, joyreactor.cc

Кракен – гигантский осьминог

Гигантские крысы

Загадочные вирусы

Видение Джуд-Хаэля. Девушка с небес

Где предпочтительно остановиться в Москве

Москва - огромный мегаполис, ежедневно встречающий многочисленных приезжих. Кто-то отправляется сюда с экскурсионным визитом, у кого-то цель – деловая поездка. Удобство...

Китайская культура - древняя цивилизация

Согласно утверждению китайского ученого Лян Цичао, Китай вместе с Вавилоном, Индией и Египтом является одной из четырех древних цивилизаций. Эта большая...

Философия Древнего Востока

Особенности направлений древнеиндийской философии: брахманизм; философия эпического периода; неортодоксальные и ортодоксальные школы. Школы и направления древнекитайской философии: конфуцианство; даосизм; моизм; легизм; ...

Пока весь мир разрабатывает топливные элементы и говорит о водородной энергетике будущего, скептики не устают повторять, что до сих пор у человечества не существует дешевого способа получения водорода. Современным методом получения является электролиз воды, однако для его осуществления в глобальных масштабах потребуется уйма электричества.

Основные надежды человечество возлагает на проект термоядерного синтеза, который должен открыть людям неисчерпаемый источник энергии, однако прогнозировать дату вступления первого токамака в строй до сих пор никто не берется. Кроме того, ученые пытаются приспособить бактерии для выработки водорода из пищевых и промышленных отходов, а еще пытаются имитировать процесс фотосинтеза , разделяющий воду на водород и кислород в растениях. Все эти методы пока еще очень далеки от промышленной реализации.

Американские ученые, похоже, научились получать водород в больших количествах при реакции алюминия с водой.

Разработчики из Университета Пердью создали новый сплав металлов, обогащенный алюминием, который может быть весьма эффективен в процессе выработки водорода. Использование этого сплава, кроме прочего, экономически оправдано, и такой метод может уже в скором времени составить конкуренцию современным видам топлива, используемым в транспортной и энергетической индустрии.

Как говорит Джерри Вудолл, профессор университета и инициатор работ, его инновация может найти применение во всех сферах — как в мобильных устройствах для выработки энергии, так и в больших промышленных установках.

Новый сплав на 95% состоит из алюминия, а на оставшиеся 5% — из сложного сплава галлия, индия и олова. Хотя галлий и является очень редким и дорогим элементом, его количества в сплаве настолько малы, что стоимость сплава, и особенно стоимость его эксплуатации, может быть коммерчески выгодной.
При внесении этого сплава в воду алюминий вступает в реакцию окисления, в результате которой выделяется водород и тепловая энергия, а алюминий переходит в форму оксида.
2Al + 3H 2 O --> 3H 2 + Al 2 O 3 + Q

Из школьного курса химии каждому должно быть известно, что алюминий — чрезвычайно активный металл и легко вступает в реакцию с водой, высвобождая водород в ходе собственного окисления. Однако использование алюминия в быту, и особенно в качестве посуды для приготовления пищи, абсолютно безопасно, так как на поверхности алюминия всегда есть тончайшая, но очень прочная и инертная оксидная пленка Al 2 O 3 , из-за которой заставить алюминий вступить в реакцию с водой не так уж и легко.

Сплав индия, галлия и олова является критическим компонентом для технологии Вудолла: он препятствует образованию этой оксидной пленки и позволяет алюминию количественно вступить в реакцию с водой.

Кроме водорода ценным продуктом реакции является и тепловая энергия, которая также может быть использована. Оксид алюминия и более инертный сплав галлия, индия и олова может быть впоследствии восстановлен в ходе известного промышленного процесса, таким образом, замкнутый цикл может снизить стоимость выработки энергии, в пересчете на отечественные деньги, до менее чем 2 рублей за киловатт-час.

Заслуга химиков-технологов в том, что они не только смогли проделать титаническую работу по подбору химического состава алюминиевого сплава, но и научились контролировать его микроструктуру, которая и является ключом к функционализации материала.

Дело в том, что смесь металлов при затвердевании не формирует однородного твердого раствора из-за различий в строении кристаллических решеток металлов, кроме того, формирующийся сплав имеет довольно низкую температуру плавления. В результате конечный сплав формируется при остывании из расплава в виде смеси двух независимых фаз — алюминия и сплава галлия, индия и олова, вкрапленных в толщу материала в виде микроскопических кристаллитов.

Именно такая двухфазная композиция и определяет способность алюминия в данном сплаве вступать в реакцию с водой при нормальных условиях, а потому является критичной для всей технологии.

Кроме того, как оказалось, данный материал может быть получен в двух разных формах в зависимости от способа охлаждения расплавленной смеси металлов. Судя по всему, при быстром охлаждении (закалке) кристаллическая структура раствора не успевает перестроиться, в результате чего образец на выходе получается практически однофазным. Сплав Вудолла в такой форме не вступает в реакцию с водой до тех пор, пока не будет смочен расплавленной смесью галлия, индия и олова.

Однако обнаружив способность такого смоченного материала вступать в реакцию с водой при нормальных условиях, ученые изрядно воодушевились и спустя некоторое время обнаружили способность расплава, обогащенного алюминием, кристаллизоваться при медленном охлаждении в двухфазной форме. Такой материал способен вступать в реакцию с водой уже без участия жидкого сплава галлия, индия и олова. Как полагают ученые, определяющим фактором в препятствии для образования пленки оксида на поверхности материала является микроструктура материалов на поверхности раздела между двумя фазами, образующими материал.

В данный момент ученые озабочены технологической задачей брикетирования своего сплава для повышения удобства его использования. Так, брусочек алюминиевого сплава может быть помещен в реактор, размеры которого определяются необходимым количеством водорода, и выдать ровно столько водорода, сколько нужно в том месте и в то время, когда это необходимо. Такая технология, будучи доведенной до логического конца, снимет еще две насущные проблемы водородной энергетики (помимо собственно получения водорода из воды), а именно, хранение водорода и его транспортировку.
Сплав индия, галлия и олова является инертным компонентом и не участвует в реакции, так что после окончания реакции может быть использован заново практически без потерь.

Оксид алюминия также является очень удобной субстанцией для проведения его электрохимического восстановления в соответствии с процессом Холла-Эру, повсеместно используемого в алюминиевой промышленности в настоящее время:
2Al 2 O 3 + 3С = 4Al + 3CO 2
По словам учёных, восстановление алюминия из оксида, получающегося при производстве водорода, даже дешевле, чем его стандартное производство из бокситов, хотя полный цикл из алюминия в алюминий, разумеется, затратен — вечный двигатель учёные создавать не собирались.

В принципе, для внедрения технологии Вудолла, пока еще не описанной в научных публикациях, не требуется новых инноваций — необходимо лишь наладить инфраструктуру доставки сплава к конечному потребителю и организовать процесс его восстановления с использованием хорошо освоенных промышленностью методов получения металлического алюминия.

Алюминий является самым распространенным металлом на Земле. Кроме того, побочным продуктом разработки бокситных руд — минералов, содержащих алюминий, является как раз галлий — самый ценный компонент сплава Вудолла.

Сам ученый, награжденный в прошлом высшей наградой в области технологии в США, отмечает наряду с проблемами чисто экономического характера и необходимость проведения дополнительных экспериментов по влиянию состава и в особенности микроструктуры на поверхности раздела фаз в новом материале на его свойства. Такие работы вполне могут позволить в будущем перейти к использованию более дешевых и доступных металлов, чем галлий.

В продолжение темы:
Безопасность

лекция 6 Значение правильной организации питания в походеПитание = Неправильное питание = Энергия + строительный материал 1. 2. 3. 4. Проблемы со здоровьем Психологический...

Новые статьи
/
Популярные