Гены: понятие, разновидности, мутации и наследственность. Гены и наследственность Гены бывают

Все гены делятся на три группы:

· cтруктурные – контролируют развитие признаков путем синтеза соответствующих ферментов;

· регуляторные – управляют деятельностью структурных генов;

· модуляторные – смещают процесс проявления признаков в сторону его усиления или ослабления, вплоть до полной блокировки.

Особенности строения генов

У прокариотических и эукариотических клеток

Клетки в природе делятся на прокариотические и эукариотические. У прокариот ген имеет непрерывную структуру, т.е. представляет собой часть молекулы ДНК.

У эукариот ген состоит из чередующихся участков: экзонов и интронов . Экзон – информативный участок, интрон – неинформативный. Число интронов у разных генов неодинаково (от 1 до 50).

Разновидности генов

Наряду с приведенной ранее функциональной классификацией генов существуют и другие их разновидности: псевдогены, онкогены и мобильные гены.

Псевдогены (ложные гены) – нуклеотидные последовательности в молекуле ДНК, сходные по строению с известными генами, но утратившие функциональную активность.

Онкогены – нуклеотидные последовательности в молекуле ДНК, присутствующие в хромосомах нормальных клеток, способные активизироваться под влиянием факторов внешней среды и продуцировать белки, вызывающие рост опухолей.

Мобильные (прыгающие) гены – гены, не имеющие постоянной локализации не только в хромосоме, но и в пределах хромосомного набора клетки. Понятно, что перемещения генов влияют на их экспрессию – ранее не активные гены могут активизироваться, и наоборот. Некоторые ученые считают, что эти гены играют важную роль в эволюции. Видимо, возникновение таким путем отдельных видов (в результате переноса информации от вида к виду) действительно возможно.

В последние десятилетия в генетике появилось еще одно новое понятие – «семейство генов», или «мультигенное семейство» . Это группа генов, имеющих сходное строение, общее происхождение и выполняющих сходные функции. Число генов в разных семействах может колебаться от нескольких единиц до нескольких тысяч.

У человека имеются семейства генов, кодирующие

· α- и b- глобиновые белки гемоглобина;

· иммуноглобулины;

· актины и миозины;

· белки, определяющие тканевую несовместимость;

· гистоновые белки.

Организация генов мультигенных семейств может быть разной. Так, семейства актиновых и миозиновых генов разбросаны по всему геному. Семейства генов, кодирующих a- и b- глобиновые белки, сосредоточены в одной хромосоме и образуютгенные кластеры (так называют семейства генов, расположенных в одной хромосоме).

Генные кластеры возникли в результате дупликации (удвоения) отдельных генов. Таким образом, возникновение генных кластеров есть отражение эволюционного процесса.

Вопрос 3

3. Тип Плоские черви, Plathelminthes, Класс Ленточные черви, Сestoidea, Вид Цепень карликовый, Hymenolepis nana

Ÿ Половозрелые формы:длина 1-5 см, 200 и больше члеников, сколекс грушевидный с 4 присосками и хоботок с венчиком из крючьев

Ÿ повсеместное

Ÿ кишки человека → зрелые яйца → яйца проглочены → онкосферы, внедряются в ворсинки кишок → цистицеркоиды → ворсинки разрушаются, цистицеркоиды попадают в просвет кишок → половозрелая форма (через 14-15 дней) → живут 1-2 месяца, 1500 штук.Иногда происходит аутоинвазия и аутореинвазия (превращение яиц в зрелую форму без выхода из кишок).

Заболевание: гименолепидоз (в тонком кишечнике), дети дошкольного возраста. Головная боль, боль в животе, нарушение деятельности кишок и нервной системы, общая слабость, быстрая утомляемость. Виды вреда: механический (разрушение большого числа ворсинок), токсический.

Диагностика : обнаружение яиц в фекалиях.

Профилактика : личная (соблюдение правил гигиены, мытьё рук перед едой и после посещения туалета), общественная (привитие гигиенических навыков детям, санпросвет работа, тщательная уборка детских помещений, стерилизация игрушек, выявление, изоляция и лечение больных).

Очаговость: нет.

БИЛЕТ № 11

Биологические аспекты старения. Теории старения. Основные направления борьбы с преждевременной старостью.

Аллельные гены. Определение. Формы взаимодействия.

Широкий лентец: систематика, геогр-ое распр-ие, особенности морфологии, цикл разв. Лабор-ая диагностика и профилактика дифиллоботриоза.

Вопрос 1

1) Старение – комплекс морфофизиологических и биохимических изменений, наблюдаемых во всех органах и тканях организма и ведущих к его разрушению.

Существуют внешние и внутренние признаки старения.

Различают физиологическую и преждевременную (связанную с болезнью)старость.

собака растет 2 года – живет 10-15 лет;

корова растет 4 года – живет 20 лет;

верблюд растет 8 лет – живет 40 лет.

Теории старения

И.И. Мечников.

Считал, что старение – патология. В основе – отравление нервных клеток кишечными ядами (индол, крезол, фенол, скатол), которые всасываются и действуют на нервные клетки.

Петрова.

Связывала старение с состоянием ЦНС. Стрессовые ситуации ведут к нарушению функционирования н.с. и к старению.

Ружечка.

Старение – изнашивание коллоидных систем клеток. С возрастом коллоидные частицы слипаются и переходят из гидрофильной в гидрофобную форму, цитоплазма теряет воду. Нарушаются обменные процессы.

Богомолец.

Изнашивание соединительной ткани приводит к изнашиванию организма.

Гипотеза «накопления ошибок».

Во время репликации ДНК накапливаются ошибки и это ведет к накоплению чужеродных белков, что вызывает разлад обмена веществ.

Аутоиммунная теория.

С возрастом Т- и В-лимфоциты начинают хуже выполнять свои функции, не узнают собственные клетки и вырабатывают антитела против них. В результате происходят реакции «антиген – антитело». Пример – ревматизм, гломерулонефрит - заболевания аутоиммунной природы..

Гипотеза свободных радикалов.

В норме в клетке в ходе окислительно-восстановительных процессов образуются свободные радикалы. Это частицы, имеющие на внешней орбите неспаренные электроны. Они очень активны и вступают в связь с ДНК, РНК, белками, нарушая их функцию, а значит, и обменные процессы. В клетке в норме есть антиоксиданты - вещества, связывающие свободные радикалы.Многие антиоксиданты поступают из внешней среды с пищей (витамины А, С, Е, каротиноиды). Крысы, получающие с пищей антиоксиданты, живут в 1,5 раза дольше.

Адаптационно-регуляторная теория Фролькеса.

В отличие от других гипотез, рассматривает старение как сложный многофакторный процесс. Старение характеризуется, с одной стороны, угнетением обмена веществ, с другой – адаптацией к изменяющимся условиям существования. Процесс старения захватывает все уровни регуляции. На уровне генетическом аппарата происходит сокращение числа активных генов, на уровне энергетического обмена - замена кислородного окисления на бескислородное (приспособление организма), на уровне общерегуляторных систем - сдвиги в ЦНС, разлад между корой и подкоркой. Происходит увеличение числа ядер и других органелл (адаптация). Гормонов вырабатывается меньше, но чувствительность клеток к ним больше (также адаптация).

Теория, основанная на существовании в клетке биологических часов.

Русский ученый А. Оловников, 1971 г. Американский ученый Майк Вест, 1995 г.

Число клеточных делений строго ограничено (фибробласты делятся 50 раз). В S-период интерфазы перед митозом во время репликации ДНК происходит укорочение концов хромосом (теломеров) и с каждым новым S-периодом длина теломеров все меньше. После достижения критической величины репликация не наступает - митоза нет.

Основные направления борьбы с преждевременным старением

Французский ученый Дастр: Искусство продления жизни – это искусство не сокращать ее.

По данным ВОЗ, здоровье человека на 50% связано с образом жизни.

1. Улучшение условий труда и быта.

2. Качественное питание. (Лишние 4 кг сокращают жизнь на 1 год.)

3. Улучшение медицинского обслуживания.

4. Регулярные занятия физкультурой. (Два 2-хчасовых занятия в неделю - гребля, плавание, лыжи, коньки - добавляют 7-9 лет жизни.)

5. Борьба с вредными привычками. (1 мин курения – 1 мин жизни. 1 пачка в день - 4 года, 2 - 8 лет. Алкоголь уменьшает продолжительность жизни на 20%.)

6. Нормальный психологический микроклимат.

7. Охрана окружающей среды.

Вопрос 2

2) Аллельными называются гены, которые определяют контрастирующие (альтернативные) свойства одного признака и расположены в гомологичных хромосомах в одном и том же локусе.

Например, цвет глаз – признак; голубой и карий – контрастирующие свойства. Или: умение владеть рукой – признак; праворукость и леворукость – контрастирующие свойства.

Взаимодействие аллельных генов

Различают 6 видов такого взаимодействия:

1) полное доминирование

2) неполное доминирование

3) сверхдоминирование

4) кодоминирование

5) межаллельная комплементация

6) аллельное исключение

Краткая характеристика видов взаимодействия аллельных генов

При полном доминировании действие одного гена из аллельной пары (т.е. одного аллеля) полностью скрывает присутствие другого аллеля. Фенотипически проявляемый ген называется доминантным и обозначается А;

подавляемый ген называется рецессивным и обозначается а .

Неполное доминирование имеет место в случае, когда доминантный ген не полностью подавляет действие рецессивного гена, и у гетерозигот наблюдается промежуточный характер наследования признака.

Пример – окраска цветков у ночной красавицы: доминантные гомозиготы – красные, рецессивные гомозиготы – белые, гетерозиготы – промежуточная, розовая окраска.

О сверхдоминировании говорят, когда фенотипическое проявление доминантного гена в гетерозиготном варианте сильнее, чем в гомозиготном:

Кодоминирование – проявление в гетерозиготном состоянии признаков, кодируемых обоими аллельными генами.

Пример – наследование у человека IY группы крови (AB). Это же – пример множественного аллелизма.

Множественный аллелизм – наличие в генофонде популяций более двух аллельных генов.

Пример в природе – окраска шерсти у кроликов.

Межаллельная комплементация – взаимодействие аллельных генов, при котором возможно формирование нормального признака у организма, гетерозиготного по двум мутантным аллелям этого гена.

Пример: D – ген, кодирующий синтез белка с четвертичной структурой (например, глобин в гемоглобине). Четвертичная структура состоит из нескольких полипептидных цепей. Мутантные гены – и D¢¢ - определяют синтез измененных белков (каждый своего). Но при объединении эти цепи дают белок с нормальными свойствами:

D¢ + D¢¢ = D .

Аллельное исключение – такое взаимодействие, при котором в разных клетках одного и того же организма фенотипически проявляются разные аллельные гены. В результате возникает мозаицизм .

Классический пример – аллельные гены в Х-хромосоме женского организма. В норме из двух этих хромосом функционирует только одна. Другая находится в плотном спирализованном состоянии (инактивированном) и называется «тельце Барра ». При образовании зиготы 1 хромосома наследуется от отца, другая – от матери, инактивированной может быть любая из них.

Вопрос 3

3) Лентецширокий

Ÿ Тип Плоские черви, Plathelminthes

Ÿ Класс Ленточные черви, Сestoidea

Ÿ Вид Лентец широкий, Diphyllobothrium latum.

Ÿ Половозрелые формы:

§ длина 7-10 метров и более

§ сколекс без присосок, с 2 присасывательными бороздками – ботриями

§ проглоттиды в ширину больше чем в длину

§ в зрелых члениках: желточники по бокам, матка имеет форму петель, образующих розетку, отверстие матки – у переднего края проглоттиды; половая клоака – на брюшной стороне по средней линии близ переднего края проглоттиды.

Ÿ Яйца: желтовато-коричневые, овальные с крышечкой

Ÿ Корацидий: свободно плавающая личинка, покрытая ресничками с 3 парами крючьев

Ÿ Процеркоид: удлинённая форма тела с 6 крючьями на заднем конце тела

3 повсеместно, где есть водоёмы, Карелия, Ленинградская область, Прибалтика, Волга, Днестр, Одесская, Полтавская, Херсонская, Черкасская и другие области.

4 Цикл развития: испражнения человека → яйца → вода → корацидий → циклоп → в кишках – онкосфера → в полости тела – процеркоид → рыба (проглотила циклопа) → в мускулатуре – плероцеркоид → хищные рыбы (резервуарные хозяева) → человек (съел свежепосоленную икру, сырую или полусырую рыбу).

5 Диагностика: обнаружение яиц лентеца в фекалиях.

6 Профилактика: личная (не употребление сырой и полусырой рыбы), общественная (санпросвет работа).

Y-хромосома

Y-хромосома – это половая хромосома человека, определяющая мужской пол. Соответственно, она присутствует только в клетках мужчин. В отличие от других хромосом Y-хромосома передается от отца к сыну в практически неизменном виде. Изменения в Y-хромосоме происходят только в результате случайных мутационных процессов. Если при производстве половых клеток в Y-хромосоме мужчины произошла мутация, то все его сыновья получат уже измененную мужскую половую хромосому.

Особенности Y-хромосомы (передача «по прямой» и редкие мутации) позволяют использовать ее для отслеживания эволюционной истории человечества. Анализируя мутации мужской хромосомы у разных людей, ученые смогли определить, как «выглядела» Y-хромосома «молекулярно-биологического Адама» – мужчины, от которого произошли все живущие на Земле представители сильного пола. Кроме того, исследователи выделили несколько «типов» Y-хромосом, отличающихся между собой определенными мутациями (их называют однонуклеотидными полиморфизмами). Такие разновидности мужских хромосом получили название гаплотипов, и все мужчины планеты принадлежат к одному из них.

Аллелями называют различные формы одного и того же гена. У человека в каждой клетке присутствует по два набора всех генов: один он получает от отца, второй – от матери. Все гены имеют строго определенное положение на хромосоме. Если расположить рядом отцовскую и материнскую хромосомы, то каждый ген хромосомы, пришедший от отца, окажется ровно напротив такого же гена (аллеля), доставшегося от матери.

Если у организма оба аллеля (отцовский и материнский) какого-либо гена одинаковы, то такой организм называют гомозиготным по этому гену. Если же аллели разные (например, материнский ген отвечает за светлые волосы, а отцовский – за темные), то организм называют гетерозиготным по этому признаку.

Гаплогруппа

Гаплогруппа представляет собой совокупность сходных гаплотипов. Отдельные гаплогруппы выделяют по конкретным однонуклеотидным полиморфизмам. Если несколько человек принадлежат к одной гаплогруппе, значит, все они являются прямыми потомками «основателя» гаплогруппы, у которого впервые появился этот полиморфизм. Специалисты, изучающие популяции людей, чаще всего работают с митохондриальными гаплогруппами и гаплогруппами Y-хромосомы. Митохондриальная ДНК передается только от матери к дочери, а ДНК Y-хромосомы – только от отца к сыну.

Гаплотип

Гаплотипом называют такую совокупность генов (а точнее – их аллелей) на хромосоме, которая передается потомству как единое целое.

Люди несут в своих клетках по две копии каждой из хромосом (за исключением половых). Одна копия приходит от отца, а вторая от матери. При образовании половых клеток (сперматозоидов или яйцеклеток) материнские и отцовские хромосомы соединяются и обмениваются различными участками. В итоге геномы половых клеток несколько отличаются от генома породившего их организма (этот процесс необходим для увеличения генетического разнообразия потомства). Перемешивание генов между отцовскими и материнскими хромосомами можно представить себе как обмен блоками. Блоки, которые всегда (за редким исключением) обмениваются как единое целое, и называются гаплотипами.

Геном называют элементарную единицу наследственности, потому что один ген кодирует один определенный признак организма. Структурно ген представляет собой последовательность нуклеотидов ДНК. Специальные молекулы в клетках человека расшифровывают эту последовательность и синтезируют на ее основе либо молекулы белка, либо молекулу РНК. Белки выполняют самые различные функции, например, они могут быть ферментами или из них могут формироваться те или иные ткани и органы. Молекулы РНК регулируют синтез новых белков или работу генов. Нарушения в структуре гена чреваты нарушениями в синтезе белков или РНК, что может пагубно отразиться на работе организма.

Геном – это совокупность всех генов организма. У человека в каждой клетке все гены представлены в двух копиях (одна от отца, вторая от матери), но когда ученые говорят о геноме, они имеют в виду одинарный набор генов. Таким образом, клетки человека несут по два генома. В половых клетках– яйцеклетке и сперматозоиде – содержится одинарный набор хромосом, и, следовательно, одна копия генома.

Дикий тип (wild type)

Признак, присущий большинству особей в популяции; обычный фенотип; норма.

ДНК – дезоксирибонуклеиновая кислота – молекула, на которой записана наследственная информация об организме. ДНК можно сравнить с магнитофонной лентой, на которой хранятся инструкции по созданию магнитофона и указания, как он должен работать. Молекулы ДНК есть в каждой клетке организма – они хранятся в клеточном ядре в форме хромосом. При делении клетки ее ДНК удваивается, и каждая из клеток-«дочек» получает полный набор.

Структурно ДНК состоит из отдельных «кирпичиков» – нуклеотидов. Различают четыре вида «кирпичиков» - аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). В молекуле ДНК нуклеотиды соединяются друг за другом, образуя длинные цепи. Нуклеотиды расположены в ДНК не в случайном порядке – они образуют «слова» генетического языка, то есть гены.

Митохондриальная ДНК

Митохондриальная ДНК - это ДНК, находящаяся не в ядре клетки, а внутри клеточных структур, называемых митохондриями. Митохондрии – это клеточные энергостанции, которые производят молекулы, поддерживающие функционирование клетки. Ученые полагают, что митохондрии произошли от бактерий и поэтому сохранили часть своей ДНК.

В череде поколений митохондрии передаются только по материнской линии (то есть от матери к дочери), так как первой клеткой будущего организма со всеми ее структурами становится материнская яйцеклетка, а отцовский сперматозоид приносит в нее только ДНК.

Помимо того, что митохондриальная ДНК непрерывно передается от предков к потомкам, она, в отличие от ядерной ДНК, сохраняется в череде поколений в практически неизменном виде. Эти два свойства оказались очень полезными для изучения эволюции человека (и других живых существ). Сравнивая митохондриальные ДНК множества людей, ученые смогли найти «митохондриальную Еву» – ближайшего предка всех людей, от которой они получили митохондриальную ДНК.

Несмотря на то что ДНК митохондрий почти не изменяется со временем, в ней все же накапливается некоторое количество мутаций. Измененная митохондриальная ДНК расходится от женщины, у которой впервые произошла мутация, ко всем ее дочерям, дочерям дочерей и так далее. На основании таких мутаций, называемых однонуклеотидными полиморфимами, ученые отнесли всех людей к нескольким гаплогруппам по митохондриальной ДНК (существуют еще гаплогруппы, выделяемые по мужской Y-хромосоме).

Моногенные заболевания

Моногенные заболевания – это заболевания, в развитии которых «виноваты» мутации, произошедшие в одном-единственном гене. Моногенные болезни наследуются по правилам классической (менделеевской) генетики. То есть развитие заболевания зависит от того, какие аллели конкретных генов есть у человека в геноме. Если «опасный» ген находится на одной из неполовых хромосом, то он может наследоваться двумя способами: аутосомно-доминантным и аутосомно-рецессивным.

Заболевание наследуется по аутосомно-доминантному типу, если «больной» (мутантный) аллель сильнее «здорового». В этом случае действие мутантного аллеля (то есть развитие болезни) проявляется даже в том случае, если его напарник не несет мутации.

При аутосомно-рецессивном типе наследования для развития болезни необходимо, чтобы у человека в геноме присутствовали два мутантных аллеля. Иными словами, и отец, и мать должны передать ему «плохие» варианты гена. В том случае, если один из вариантов оказывается «хорошим», то человек не заболевает.

В отдельную группу выделяют заболевания, связанные с мутациями генов, находящихся на половых хромосомах. Такие заболевания передаются только от отца к сыну (когда «плохой» ген находится на мужской Y-хромосоме) или же от матери детям обоего пола (когда вызывающая болезнь мутация происходит на женской Х-хромосоме). Этот тип заболеваний чаще всего проявляется у мужчин. Если «плохой» аллель находится на Y-хромосоме, то женщина, в принципе, не может его получить, так как обе половые хромосомы у женщин – это Х-хромосомы. Если болезнь связана с мутацией в женской половой хромосоме, то мужчина, получивший «плохую» хромосому, будет болен (так как у него в геноме нет «здоровой» пары). У девочки-носителя действие мутантного аллеля маскируется его здоровым напарником, и болезнь проявляется только в том случае, если обе ее Х-хромосомы несут мутацию.

Еще один тип моногенных заболеваний – это митохондриальные заболевания, то есть заболевания, связанные с мутацией в ДНК митохондрий. Такие болезни передаются от женщин детям обоего пола (так как новый организм получает митохондрии из материнской яйцеклетки).

Однонуклеотидный полиморфизм

Однонуклеотидным полиморфизмом (от английского single nucleotide polymorphism - SNP; в русскоязычной литературе употребляется слово «снип») называют изменение в последовательности ДНК размером в один нуклеотид. Оно может произойти в результате замены, вставки или выпадения нуклеотида.

Иногда снипы меняют работу генов, но во многих случаях они никак не сказываются на их активности. По некоторым оценкам, в геноме человека насчитывается около 10 миллионов однонуклеотидных полиморфизмов. Ученые составили огромные базы данных снипов, так как они являются удобным инструментом генетического анализа. Так, многие снипы четко связаны с риском тех или иных заболеваний (то есть наличие у человека определенного снипа увеличивает для него вероятность развития той или иной болезни).

Помимо медико-биологических исследований снипы используются специалистами для изучения различных популяций людей. Так, именно по снипам выделяют гаплогруппы – один из отличительных признаков популяций.

Полигенные заболевания

Полигенными называют заболевания, которые развиваются в результате совместной «работы» нескольких генов и факторов среды. Другими словами, у полигенных заболеваний нет какой-то одной вызывающей их причины. Тем не менее, гены играют в развитии таких заболеваний немалую роль (раньше их называли болезнями с наследственной предрасположенностью). Наличие определенных вариантов генов повышает риск развития у человека того или иного полигенного заболевания. Типичными примерами полигенных заболеваний являются сахарный диабет, ревматизм, бронхиальная астма.

Популяция

Популяцией называют совокупность особей одного вида, обитающих более или менее обособленно от других особей и воспроизводящихся в течение длительного времени. Представители одной популяции с большей вероятностью заводят потомство друг с другом, чем с представителями других популяций. Обычно такая избирательность является следствием географической или иной изоляции (в случае людей типична, например, изоляция по национальному признаку). Предпочтительное генетическое перемешивание только внутри популяции приводит к тому, что для ДНК всех членов популяции характерна некоторая общность. Эта особенность позволяет ученым отличать выходцев из тех или иных популяций при помощи анализа ДНК.

Хромосома

Хромосомы – это крошечные тельца, находящиеся в клеточном ядре. Они состоят из плотно скрученных нитей ДНК, соединенных с особыми белками. Название происходит от греческих слов «хрома» – цвет и «сома» – тело. То есть термин «хромосома» буквально переводится как окрашенное тельце. Дело в том, что под микроскопом хромосомы видны как плотные темные «колбаски».

На самом деле, ДНК существует в виде «окрашенных телец» очень недолго – только при делении клетки. В остальное время ДНК частично распутывается, и разглядеть отдельные хромосомы нельзя.

1)По характеру взаимодействия в аллельной паре:

Доминантный (ген, способный подавлять проявление аллельного ему рецессивного гена);

Рецессивный (ген, проявление которого подавлено аллельным ему доминантным геном).

2)Функциональная классификация:

гены-модуляторы - гены, способствующие распространению опухоли в организме, но не отвечающие за злокачественную трансформацию клетки непосредственно.

Гены-ингибиторы (гены-супрессоры, антионкогены) - гены, кодирующие ключевые регуляторные белки, потеря которых влечет за собой нарушения контроля пролиферации; подавляют активность генов.

Ген-интенсификатор - усиливает активность некоторых генов.

Ген-модификатор - ген, не имеющий собственного выражения в фенотипе, но оказывающий усиливающее или ослабляющее влияние на экспрессию других генов.

Ген-регулятор - ген, модифицирующий или регулирующий активность других генов.

Синтез белка контролируют гены-операторы . Совокупность рабочих генов – операторов и структурных генов – называется оперон.


Аллель гена. Множественные аллели как результат изменения нуклеотидной последовательности гена. Полиморфизм гена как вариант нормы и патологии. Примеры.

Аллели(парные гены) - гены находящиеся в одинаковых локуса гомологичных хромосом и обуславливающие формирование альтернативных признаков (например гены, определяющие желтую и зеленую окраску семян гороха в опытах Г. Менделя). Пр мейозе аллельные гены попадают в разные гаметы. При скрещивание особей признаки, определяемые аллельными генами подчиняются законам мендалевского расщепления.

Множественные аллели - один из видов взаимодействия аллельных генов, при котором ген может быть представлен не двумя аллелями (как в случаях полного или неполного доминиро­вания), а гораздо большим их числом;

Примеры: 1 .множественные аллели окраски кроликов. Аллель С обеспечивает черную окраску тела; аллель ch - так называемую гималайскую окраску, когда черный цвет имеют уши, кончик морды, кончики лап и хвост; аллель с вызывает альбинизм. Аллель С доминирует над двумя другими, а аллель ch - над аллелем. 2. Наследование групп крови.

Полиморфными принято называть гены, которые представлены в популяции несколькими разновидностями - аллелями, что обусловливает разнообразие признаков внутри вида.

Обычно, причиной различий (полиморфизма) генов являются изменения отдельных нуклеотидов в молекуле ДНК, что приводит к изменению свойств гена (иногда в лучшую, а чаще, в худшую сторону). Некоторые изменения неизбежно являются причиной генных болезней и проявляются уже с рождения (например, муковисцидоз, мышечная дистрофия и др.), это – так называемые моногенные болезни, другие не приводят к болезням, но являются фактором предрасположенности к определенным заболеваниям (злокачественные опухоли, сердечно-сосудистые, аллергические и др. заболевания). В этом случае для развития болезни необходимы определенные внешние условия – характер питания, поступление в организм токсинов и онкогенов (табачный дым, алкоголь), нехватка витаминов и др. Эти болезни называются мультифакториальными. При определенных условиях (требуется достаточно длительный отрезок времени – сотни или тысячи лет) мутантные гены могут распространяться в популяциях и становиться достаточно обычными аллельными вариантами, обеспечивая основу генного полиморфизма.

Которые содержат инструкции по производству белка. По подсчетам ученых, геном человека включает около 20 000 генов, но с развитием генетики, их число постоянно уменьшается. Гены существуют в более чем одной форме. Эти альтернативные формы называются аллелями, и для одного признака обычно имеются две аллели. Аллели определяют различные черты, которые могут передаваться от родителей к потомству. Процесс, посредством которого передаются гены - , был обнаружен Грегором Менделем и сформулирован в так называемом законе расщепления Менделя.

Гены содержат генетические коды или последовательности нуклеотидных оснований в нуклеиновых кислотах для получения конкретных белков. Информация, содержащаяся в ДНК, напрямую не превращается в белки, но должна быть сначала транскрибирована в процессе, называемом транскрипцией ДНК. Этот процесс происходит в наших . Фактическое производство белка происходит в наших клеток посредством процесса, называемого трансляцией.

Типы взаимодействия генов.

Различают следующие основные типы взаимодействия генов:

1) комплементарность; 2) элистаз; 3) полимерия; 4) модифицирующее действие генов.

Комплементарное действие генов. Гены называют комплементарными, когда они по своему проявлению как бы дополняют друг друга. Каждый такой ген в отдельности, сам по себе, не оказывает действия, не вызывает появления признака. Однако при скрещивании двух особей, из которых каждая имеет такого типа ген (например, одна имеет ген А, а другая ген В), получается гибрид, новый организм, у которого в наличии оказываются оба этих гена, и эффект их совместного действия проявляется в том, что под их совместным влиянием у гибридного организма возникает какой-то новый признак.

Например, Куры с розовидным гребнем и меют генотипАвв, с гороховидным – ааВ, с листовидным гребнем – аавв. При скрещивании кур с розовидным и гороховидным гребнем получается новый признак – ореховидный гребень.

Эпистатическое действие генов (эпистаз)

Эпистатическое действие генов по своему характеру противоположно комплементарному действию генов. Сущность его состоит в подавлении генами супрессорами действия гипостатических генов. Явление эпистаза выражается в неаллельном подавлении действия одного доминантного гена другим доминантным геном, принадлежащим к другой аллеломорфной паре.

Гены, которые подавляют действие других неаллельных им (принадлежащих к другим парам) генов, называют эпистатичными.

Эпистаз выражается в изменении соотношения расщепления во втором поколении, которое по фенотипу отклоняется от обычного расщепления при дигибридном скрещивании, т. е. от нормы Менделя 9:3:3: 1.

Рассмотрим явление эпистаза схематически. Существуют два разных по окраске типа лошадей: доминантный ген С характеризует серую окраску, а доминантный ген В — черную, вороную.

При скрещивании генотипы родителей будут: ССвв (серая) × ссВВ (вороная), а генотип F 1 CcBe .

Окраска потомства F 1 будет серая, так как ген С (доминант) эпистатически подавляет проявление гена В вороной окраски.

Скрестив между собой эти генотипы, т. е. Сс × Вв, будем иметь в F 2 расщепление по фенотипам, 12: 3: 1.

Мы видим, что: 1) все зиготы, имеющие доминантный ген С, дают серых лошадей, так как ген С серой окраски эпистатичен доминантному гену В вороной окраски; 2) все зиготы с рецессивом с и доминантом В дадут вороную окраску, так как рецессивный ген с не подавляет действия доминантного гена В ; 3) двойной рецессив ссвв т. е. форма, гомозиготная по обоим рецессивным генам, дает форму, отличную по фенотипу от форм с доминантными аллелями двух генов С и В , а также от форм с одной из таких аллелей (ссВВ, ССвв). В данном случае это отличие по фенотипу выражено в рыжей окраске лошади.

Полимерное действие генов (полимерия)

Полимерия представляет собой явление взаимодействия генов, при котором несколько однотипных (однозначных) генов оказывают сходное воздействие на развитие одного и того же признака.

Иначе говоря, полимерия обусловливается действием разного числа однозначных генов, которые, суммируясь, усиливают проявление признака, а при меньшем числе таких генов этот признак проявляется в соответственно меньшей степени.

С явлением полимерии приходится сталкиваться при изучении так называемых количественных признаков.

Такие признаки, как, например, вес животного, яйценоскость кур, количество белка, в эндосперме зерна кукурузы и зерна пшеницы, содержание витаминов в растениях, скорость протекания биохимических реакций и т. п., нельзя разложить на четкие фенотипические классы; их необходимо оценивать и измерять количественно. Такие признаки называются количественными, или мерными.

Изучение наследования количественно варьирующих признаков у различных особей одного и того же поколения было начато в первом десятилетии XX в. Шведский генетик Нильсон-Эле в 1908 г., скрещивая расы пшеницы, имеющие красные и белые зерна, обнаружил в первом поколении F 1 обычное моногибридное расщепление 3:1. Однако при скрещивании некоторых линий пшениц с такими признаками он во втором поколении (F 2) в 1910 г. получил расщепление в соотношении 15/16 окрашенных и 1/16 белых. Окраска зерен у первой группы, т. е. у 15/16 растений, варьировала от темно-красной до бледно-красной.

По типу полимерии, т. е. полимерных генов, наследуется цвет кожи у человека. Так, от брака негра и белой женщины рождаются дети с промежуточным цветом кожи (мулаты). А у супружеской пары двух мулатов рождаются дети всех возможных типов при комбинации двух неаллельных полимерных генов - от черной до белой кожи.

Изучение полимерных (множественных) генов имеет большое значение, так как очень многие хозяйственно ценные признаки у растений и животных наследуются по типу полимерии (например, содержание сахара в корнеплодах свеклы, длина початка кукурузы и т. д.).

Модификационное взаимодействие.

Гены модификаторы не имеют собственного проявления в фенотипе, но усиливают или ослабляют проявление других генов в генотипе.

Варьирование структурного гена по генам модификаторам обеспечивает проявление или непроявление признаков у организмов сходных по таким структурным генам. Это явление пенетрантности. Она вырвжается долей особей, у которых проявляется исследуемый признак среди особей одинакового генотипа, по контролируемому этот признак гену.Пенетрантность определяет частоту соответствия фенотипа определенному генотипу.

В медицинской генетике если у всех носителей патологичного гена наблюдается его клиническое (фенотипическое) проявление, то можно говорить о 100%-ой пенетрантности (ген Хорея Гентингтонна). Если действие мутантного гена проявляется не у всех его носителей – неполная пенетрантность. В этом случае носитель патологичного гена может быть клинически здоров, а в родословной наблюдается пропускание поколения.

Показатель зависимости отдельного гена от всего генотипа – экспрессивность гена – степень выраженности одного и того же признака у организмов, имеющих ген, контролирующий этот признак. Говорить об экспрессивности гена, вызывающего наследственные заболевания = говорить о тяжести заболевания.

В продолжение темы:
Культура

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.comПодписи к...

Новые статьи
/
Популярные