"Круговороты веществ и превращение энергии в биосфере. Антропогенное влияние на круговороты веществ". Урок с использованием ИКТ. Круговорот вещества и превращение энергии. Техносфера. Ноосфера Круговорот веществ между живыми и неживыми

Круговорот веществ и энергии в экосистемах обусловлен жизнедеятельностью организмов и является необходимым условием их существования. Круговороты не замкнуты, поэтому химические элементы накапливаются во внешней среде и в организмах.

Углерод поглощается растениями в процессе фотосинтеза и выделяется организмами в процессе дыхания. Он так же накапливается в среде в виде топливных ископаемых, а в организмах в виде запасов органических веществ.

Азот превращается в соли аммония и нитраты в результате деятельности азотфиксирующих и нитрифицирующих бактерий. Затем, после использования соединений азота организмами и денитрификации редуцентами азот возвращается в атмосферу.

Сера находится в виде сульфидов и свободной серы в составе морских осадочных пород и почвы. Превращаясь в сульфаты, в результате окисления серобактериями, она включается в ткани растений, затем вместе с остатками их органических соединений подвергается воздействию анаэробных редуцентов. Образовавшийся в результате их деятельности сероводород снова окисляется серобактериями.

Фосфор содержится в составе фосфатов горных пород, в пресноводных и океанических отложениях, в почвах. В результате эрозии фосфаты вымываются и, в кислой среде переходят в растворимое состояние с образованием фосфорной кислоты, которая усваивается растениями. В тканях животных фосфор входит в состав нуклеиновых кислот, костей. В результате разложения редуцентами остатков органических соединений, он снова возвращается в почвы, а затем в растения.

Биосфера – глобальная экосистема. Учение В.И. Вернадского о биосфере и ноосфере. Живое вещество, его функции. Особенности распределения биомассы на Земле. Эволюция биосферы

Существуют два определения биосферы.

Первое определение. Биосфера – это населенная часть геологической оболочки Земли.

Второе определение. Биосфера – это часть геологической оболочки Земли, свойства которой определяется активностью живых организмов.

Второе определение охватывает более широкое пространство: ведь образовавшийся в результате фотосинтеза атмосферный кислород распределен по всей атмосфере и присутствует там, где нет живых организмов. Биосфера в первом смысле состоит из литосферы, гидросферы и нижних слоев атмосферы – тропосферы . Пределы биосферы ограничены озоновым экраном, находящимся на высоте 20 км, и нижней границей, находящейся на глубине около 4 км.

Биосфера во втором смысле включает всю атмосферу. Учение о биосфере и ее функциях разработал академик В.И. Вернадский. Биосфера – это область распространения жизни на Земле, включающая живое вещество (вещество, входящее в состав живых организмов), биокосное вещество, т.е. вещество, не входящее в состав живых организмов, но формирующееся за счет их активности (почва, природные воды, воздух), косное вещество, формирующееся без участия живых организмов.

Живое вещество, составляющее мене 0,001% массы биосферы, является наиболее активной частью биосферы. В биосфере происходит постоянная миграция веществ, как биогенного, так и абиогенного происхождения, в котором живые организмы играют основную роль. Круговорот веществ определяет устойчивость биосферы.

Основным источником энергии для поддержания жизни в биосфере является Солнце. Его энергия преобразуется в энергию органических соединений в результате фотосинтетических процессов, происходящих в фототрофных организмах. Энергия накапливается в химических связях органических соединений, служащих пищей растительноядным и плотоядным животным. Органические вещества пищи разлагаются в процессе обмена веществ и выводятся из организма. Выделенные или отмершие остатки разлагаются бактериям, грибами и некоторыми другими организмами. Образовавшиеся химические соединения и элементы вовлекаются в круговорот веществ. Биосфера нуждается в постоянном притоке внешней энергии, т.к. вся химическая энергия превращается в тепловую.

Функции биосферы. Газовая – выделение и поглощение кислорода и углекислого газа, восстановление азота. Концентрационная – накопление организмами химических элементов, рассеянных во внешней среде. Окислительно-восстановительная – окисление и восстановление веществ в ходе фотосинтеза и энергетического обмена. Биохимическая – реализуется в процессе обмена веществ. Энергетическая – связана с использованием и преобразованием энергии.

В результате биологическая и геологическая эволюции происходят одновременно и тесно взаимосвязаны. Геохимическая эволюция происходит под влиянием биологической эволюции.

Масса всего живого вещества биосферы составляет ее биомассу, равную примерно

2,4 × 10 12 т.

Организмы, населяющие сушу, составляют 99,87% от общей биомассы, биомасса океана –

0, 13%. Количество биомассы увеличивается от полюсов к экватору. Биомасса (Б) характеризуется:

– своей продуктивностью – приростом вещества, приходящегося на единицу площади (П);

– скоростью воспроизведения – отношением продукции к биомассе за единицу времени (П/Б).

Самыми продуктивными являются тропические и субтропические леса.

Часть биосферы, находящуюся под влиянием активной деятельности человека, называется ноосферой – сферой человеческого разума. Термин обозначает разумное влияние человека на биосферу в современную эпоху научно-технического прогресса. Однако, чаще всего, это влияние губительно для биосферы, что в свою очередь губительно для человечества.

ПРИМЕРЫ ЗАДАНИЙ
Часть А

А1. Главная особенность биосферы:

1) наличие в ней живых организмов

2) наличие в ней неживых компонентов, переработанных живыми организмами

3) круговорот веществ, управляемый живыми организмами

4) связывание солнечной энергии живыми организмами

А2. Залежи нефти, каменного угля, торфа образовались в процессе круговорота:

1) кислорода

2) углерода

4) водорода

А3. Найдите неверное утверждение. Невосполнимые природные ресурсы, образовавшиеся в процессе круговорота углерода в биосфере:

2) горючий газ

3) каменный уголь

4) торф и древесина

А4. Бактерии, расщепляющие мочевину до ионов аммония и углекислого газа, принимают участие в круговороте

1) кислорода и водорода

2) азота и углерода

3) фосфора и серы

4) кислорода и углерода

А5. В основе круговорота веществ лежат такие процессы, как

1) расселение видов 3) фотосинтез и дыхание

2) мутации 4) естественный отбор

А6. Клубеньковые бактерии включают в круговорот

1) фосфор 3) углерод

2) азот 4) кислород

А7. Солнечная энергия улавливается

1) продуцентами

2) консументами первого порядка

3) консументами второго порядка

4) редуцентами

А8. Усилению парникового эффекта, по мнению ученых, в наибольшей степени способствует:

1) углекислый газ 3) двуокись азота

2) пропан 4) озон

А9. Озон, который образует озоновый экран, формируется в:

1) гидросфере

2) атмосфере

3) в земной коре

4) в мантии Земли

А10. Наибольшее количество видов находится в экосистемах:

1) вечнозеленых лесов умеренного пояса

2) влажных тропических лесов

3) листопадных лесов умеренного пояса

Учение В.И. Вернадского о биосфере. Живое вещество биосферы, его роль и свойства.

Любой биоценоз взаимодействует со своей средой обитания - биотопом, в результате чего образуется более сложная биологическая система - биогеоценоз. Биотоп включает в свой состав почву (эдафотоп), воду (гидротоп) и воздух с климатическими факторами (климатотоп). Термин биогеоценоз был введен в 1942 году советским ученым В.Н.Сукачевым. Биогеоценоз - это исторически сложившаяся совокупность на известной протяженности земной поверхности однородных природных явлений - атмосферы, горной породы, гидрологических условий, растительного и животного мира, мира микроорганизмов и почвы. Иными словами, биогеоценоз - это исторически сложившаяся совокупность биоценоза и биотопа, основу которой составляет метаболизм ее компонентов, т.е. обмен веществом и энергией. Состав биогеоценоза можно представить в виде следующей схемы.

Параллельно с термином «биогеоценоз» применяется термин «экосистема», который был предложен английским ученым А.Тенсли в 1935 году. Экосистема - это любая совокупность организмов разных видов и неорганических компонентов, в которой возможно осуществление круговорота веществ и превращения энергии. Таким образом, понятие «экосистема» шире, чем понятие «биогеоценоз». В экосистеме все организмы связаны между собой пищевыми связями и образуют пищевые цепи. Пищевая цепь - это линейная последовательность организмов, в которой происходит передача вещества и энергии от одного звена к другому. В зависимости от того, с чего начинается пищевая цепь, они подразделяются на два типа:

1) пастбищные цепи, или цепи выедания, - это пищевые цепи, начинающиеся с продуцентов. Например: капуста → гусеница → синица → ястреб → человек.

2) детритные цепи, или цепи разложения, - это пищевые цепи, начинающиеся с детрита. Например: опавшие листья (детрит) → дождевой червь → плесневые грибы → микроорганизмы → биогены.

Место организма в пищевой цепи относительно ее начала называется трофическим уровнем и обозначается римской цифрой. Трофических уровней столько, сколько пищевых звеньев в цепи питания. Однако, в связи с тем, что почти все организмы являются олиго- или полифагами, то они могут находиться на разных трофических уровнях в одной и той же пищевой цепи в зависимости от характера пищи. Кроме того, они могут быть звеньями разных пищевых цепей одновременно. В результате этого пищевые цепи в чистом виде в природе не встречаются. Переплетаясь между собой, они образуют пищевые сети.

Пищевая сеть - это совокупность пищевых цепей сообщества, взаимосвязанных между собой общими пищевыми звеньями.


Виды с широким спектром питания могут включаться в пищевые цепи на разных трофических уровнях. Только продуценты всегда занимают первый трофический уровень. Используя солнечную энергию и биогены, они образуют органическое вещество, которое содержит энергию в виде энергии химических связей. Это органическое вещество, или биомасса продуцентов, потребляется организмами второго трофического уровня. Однако не вся биомасса предыдущего уровня съедается организмами последующего уровня, потому что исчезли бы ресурсы для развития экосистемы. При переходе от одного трофического уровня к другому происходит трансформация вещества и энергии. На каждом трофическом уровне пастбищной пищевой цепи не вся съеденная биомасса идет на образование биомассы организмов данного уровня. Значительная часть ее затрачивается на обеспечение жизнедеятельности организмов: дыхание, движение, размножение, поддержание температуры тела и т.д. Кроме того, не вся съеденная биомасса усваивается. Непереваренная часть ее в виде экскрементов попадает в окружающую среду. Процент усвояемости зависит от состава пищи и биологических особенностей организмов, он составляет от 12 до 75%. Основная часть ассимилированной биомассы расходуется на поддержание жизнедеятельности организмов и только сравнительно небольшая ее часть идет на построение тела и рост. Другими словами, большая часть вещества и энергии при переходе от одного трофического уровня к другому теряется, потому что к последующему потребителю попадает только та их часть, которая включилась в биомассу предыдущего трофического уровня. По подсчетам установлено, что теряется в среднем около 90%, и только 10% вещества и энергии переходит на каждом этапе пищевой цепи. Например:

Продуценты → консументы I → консументы II → консументы III

1000 кДж → 100 кДж → 10 кДж → 1 кДж

Эта закономерность была сформулирована как «закон 10%». Он гласит, что при переходе от одного звена к другому в пастбищной пищевой цепи передается лишь 10% вещества и энергии, а остальная часть расходуется предыдущим трофическим уровнем на поддержание жизнедеятельности. Если количество вещества или энергии на каждом трофическом уровне изобразить в виде диаграммы и расположить их друг над другом, то получится экологическая пирамида биомассы или энергии. Такая закономерность получила название «правило экологической пирамиды». Этому правилу подчиняется и численность организмов на трофических уровнях, поэтому можно построить экологическую пирамиду чисел.

Таким образом, запас вещества и энергии, накопленный растениями в пастбищных пищевых цепях, быстро расходуется (выедается), поэтому пищевые цепи не могут быть длинными. Обычно они включают 4-5 звеньев, но не более 10-ти. На каждом трофическом уровне пастбищной пищевой цепи образуется отмершее органическое вещество и экскременты - детрит, от которого начинаются детритные цепи, или цепи разложения. В наземных экосистемах процесс разложения детрита включает три этапа:

1. Этап механического разрушения и частичного превращения в сахариды. Он очень короткий - 3-4 года. Его осуществляют редуценты I порядка - макробиота (черви, личинки насекомых, землероющие млекопитающие и др.). На этом этапе потерь энергии практически не происходит.

2. Этап разрушения детрита до гуминовых кислот. Он продолжается 10-15 лет и пока слабо изучен. Его осуществляют редуценты II порядка - мезобиота (грибы, простейшие, микро организмы крупнее 0,1 мм). Гуминовые кислоты - это перегной, полуразрушенное органическое вещество, поэтому при их образовании происходит разрыв части химических связей и выделяется тепловая энергия, которая рассеивается в космическом пространстве.

3. Этап разрушения гуминовых кислот до неорганического вещества - биогенов. Он протекает очень медленно, особенно в нашей умеренной зоне (сотни и тысячи лет) и еще практически не изучен. Его осуществляют редуценты III порядка - микробиота (микроорганизмы меньше 0,1 мм). При разрушении гуминовых кислот происходит разрыв всех химических связей и выделяется большое количество тепловой энергии, которая теряется в космическом пространстве. Образующиеся в результате этого процесса биогены энергии не содержат, в дальнейшем они поглощаются продуцентами и опять вовлекаются в круговорот вещества.

Как видно из вышесказанного, на уровне редуцентов наблюдается задержка жизни, но так быть не должно. В почве есть запас гуминовых кислот, которые образовались очень давно, поэтому задержки жизни не происходит. В разных экосистемах скорость разрушения гуминовых кислот разная. Если она меньше, чем скорость их образования, то плодородие почвы повышается, если же наоборот, то оно снижается. Вот почему в умеренной зоне после разрушения биогеоценоза возможно длительное использование плодородия почвы. В тропиках плодородия почвы достаточно на 2-3 года, а затем она превращается в пустыню. Здесь разрушение гуминовых кислот идет быстро. Этому способствуют высокая температура, влажность и аэрация. В умеренной зоне в почве содержится до 55% углерода, а в тропиках - только до 25%. Вот почему нельзя вырубать тропические леса, чтобы предотвратить опустынивание планеты.

Таким образом, поток энергии, входящий в экосистему, далее разбивается как бы на два основных русла - пастбищное и детритное. В конце каждого из них энергия теряется безвозвратно, потому что растения в процессе фотосинтеза не могут использовать тепловую длинноволновую энергию.

Соотношение количества энергии, проходящей через пастбищные и детритные цепи, в разных типах экосистем разное. Потеря энергии в пищевых цепях может быть восполнена только за счет поступления новых порций. Это осуществляется за счет ассимиляции солнечной энергии растениями. Поэтому в экосистеме не может быть круговорота энергии, аналогично круговороту вещества. Экосистема функционирует только за счет направленного потока энергии - постоянного поступления ее в виде солнечного излучения, либо в виде готового органического вещества.

Биологическая продуктивность экосистем

Биологическая продуктивность - это скорость возобновления биомассы растений, животных и микроорганизмов, входящих в состав экосистемы. Она выражается количеством продукции за единицу времени. Продукция - это количество биомассы, образующейся на единице площади или в единице объема биотопа за определенный промежуток времени. Значит, биологическая продуктивность отражает количество биомассы, возобновляемой на единице площади или в единице объема биотопа за единицу времени. Биомасса - это масса всех живых организмов, обитающих на единице площади или в единице объема биотопа. Она выражается в единицах серого веса или веса сухого органического вещества. Биомасса биоценоза и его биологическая продуктивность могут очень сильно отличаться.

Экосистема – единый естественный комплекс, образованный за большой период времени живыми организмами и средой обитания (атмосфера, почва, водоем, и др.), в котором все компоненты тесно связаны обменом вещества и энергии. Экосистема может стать лишь среда, где имеет место стабильность и четко функционирует внутренний кругооборот вещества и энергии.

Экосистема является основным объектом экологии. По Реймерсу, экосистема - это любое сообщество живых существ и его среда обитания, объединенные в единое функциональное целое, возникающее на основе взаимозависимости и причинно-следственных связей, существующих между отдельными экологическими компонентами.

Экосистема= Биотоп + Биоценоз.

Экосистема не только связана с ограниченным участком земной поверхности, но и применимо ко всем стабильным системам живых и неживых компонентов, где происходит внешний и внутренний кругооборот вещества и энергии. Примеры: капля воды, аквариум, озеро, океан. Как видно из этих примеров их масштабы различны. С научной точки зрения выделяют микроэкосистемы (болотная кочка, альпийская горка на даче);

мезоэкосистема – озеро, болото, конкретный участок леса;

макроэкосистема – континент, океан, коралловый риф.

Первые и вторые можно разделить на чисто водные и наземные. А все они формируют единую планетарную сеть. Причем в одной природной зоне встречается множествопохожих экосистем, которые могут быть слиты в однородные комплексыили разделены другими экосистемами. Для Беларуси: озеро в лесу.

Наземные экосистемы, относящиеся к единой природно-климатической зоне имеют общую структуру доминирующей растительности поэтому могут рассматриваться как единый большой биогеоценоз (биом). Последние являются основными объектами исследования экологической географии. В пределах каждого биома можно встретить множество сходных по приспособлению форм животных и растений, хотя происхождение их различно.

Расположим в иерархическом порядке наземные экосистемы:

Биосфера

Экосистема суши

Климатический пояс

Природно- ландшафтные зоны: Тундра(арктическая или альпийская). Бореаольные хвойные леса, листопадный лес умеренной зоны. Степь той же зоны. Тропические степи и саванны. Чапараль- районы с дождливой зимой и засушливым летом. Пустыня. Полувечнозеленый тропический лес. Вечнозеленый тропический дождевой лес.

Пресноводные и морские экосистемы, в том числе открытый океан или прибрежные бухты, устья рек, соленые марши. . Экосистемы, измененные сельходеятельностью человека: поля, сады огороды и т.д.Они получают доп. вещества и энергию, но должны базироваться на естественных природно-климатических условиях.

Каждая экосистема имеет собственное материально-энергетическое обеспечение и определенную функциональную структуру, основанную на трофических взаимоотношениях.

Принцип экологической комплементарности: никакая функциональная часть экосистемы не может существовать без других дополняющих компонентов. Живые организмы вырабатывают приспособления, скоординированные с условиями абиотической среды.

Экосистемы способны к изменениям, развитию, переходу от простых к сложным формам. Может происходить постепенная замена одних сообществ другими; изменение соотношений между автотрофными и гетеротрофными организмами, изменение биологического разнообразия

Можно отметить интересную закономерность в распределении видов в составе биоценоза: чем меньше масса организма, тем большая численность его особей. Другая закономерность: наибольшим распространением отличается сравнительно небольшое число видов. Пример, 84 % высокотравной растительности Оклахомы принадлежит 9 видам, в то время как остальные 20 видов составляют только 16 %. Это преимущество возникает вследствие узкой специализации по приспособлению к существующему биоценозу. В случае резких изменений среды обитания в первую очередь вымирают узкоспециализированные виды.

Некоторые виды сезонно встречаются в определенных биоценозах, пример стрекоз и комаров.

В.И.Вернадский в биосфере выделял три сферы жизни:

1. Атмосфера - это газообразная оболочка Земли. Она не вся заселена жизнью, ее распространению препятствует ультрафиолетовая радиация. Граница биосферы в атмосфере находится на высоте примерно 25-27 км, где располагается озоновый слой, поглощающий около 99% ультрафиолетовых лучей. Наиболее заселенным является приземный слой атмосферы (1-1,5 км, а в горах до 6 км над уровнем моря).

2. Литосфера - это твердая оболочка Земли. Она также заселена живыми организмами не полностью. Распространение жизни здесь ограничено температурой, которая постепенно возрастает с глубиной и при достижении 100°C вызывает переход воды из жидкого в газообразное состояние. Максимальная глубина, на которой обнаружены живые организмы в литосфере, составляет 4 - 4,5 км. Это и есть граница биосферы в литосфере.

3. Гидросфера - это жидкая оболочка Земли. Она заселена жизнью полностью. Границу биосферы в гидросфере Вернадский проводил ниже океанического дна, потому что дно - это продукт жизнедеятельности живых организмов.

Биосфера представляет собой гигантскую биологическую систему, включающую огромное разнообразие составляющих компонентов, охарактеризовать которые по отдельности крайне трудно. Вернадский предложил все, что входит в состав биосферы, объединить в группы в зависимости от характера происхождения вещества. Он выделял семь групп вещества: 1) живое вещество - это совокупность всех продуцентов, консументов и редуцентов, населяющих биосферу; 2) косное вещество - это совокупность веществ, в образовании которых живые организмы не участвовали, это вещество образовалось до появления жизни на Земле (горные, скалистые породы, вулканические извержения); 3) биогенное вещество - это совокупность веществ, которые образованы самими организмами или являются продуктами их жизнедеятельности (каменный уголь, нефть, известняк, торф и другие полезные ископаемые); 4) биокосное вещество - это вещество, которое представляет собой систему динамического равновесия между живым и косным веществом (почва, кора выветривания); 5)радиоактивное вещество - это совокупность всех изотопных элементов, находящихся в состоянии радиоактивного распада; 6) вещество рассеянных атомов - это совокупность всех элементов, находящихся в атомарном состоянии и не входящих в состав никакого другого вещества; 7) космическое вещество - это совокупность веществ, попадающих в биосферу из космоса и имеющих космическое происхождение (метеориты, космическая пыль).

Вернадский считал, что главную преобразующую роль в биосфере играет живое вещество. Оно выполняет пять основных биосферных функций: 1) энергетическая функция - это способность живых организмов поглощать солнечную энергию, превращать ее в энергию химических связей и передавать по пищевым цепям. Благодаря этой функции постоянно идет восполнение потерь энергии в экосистемах и поддержание жизни в биосфере; 2) газовая функция - это способность живых организмов поддерживать постоянство газового состава биосферы в результате сбалансированности фотосинтеза и дыхания. 3) концентрационная функция - это способность живых организмов накапливать в своем теле определенные элементы окружающей среды, благодаря чему произошло перераспределение элементов в пределах биосферы и образовались полезные ископаемые; 4) окислительно-восстановительная функция - это способность живых организмов в ходе биохимических реакций изменять степень окисления элементов и создавать, таким образом, разнообразие соединений в природе, необходимое для поддержания разнообразия жизни в биосфере; 5) деструктивная функция - это способность живых организмов разлагать отмершее органическое вещество до биогенов, поглощаемых продуцентами, благодаря чему осуществляется круговорот вещества в биосфере, и жизнь может существовать бесконечно долго без поступления вещества из космоса.

Рассмотрим еще одну важную структурную составляющую биоценозов – популяции. Все живые организмы существуют в форме популяции – минимальной самовоспроизводящейся группировки особей одного вида, более или менее изолированная от других подобных группировок, населяющая определенный ареал в течение длительного ряда поколений, образующая собственную генетическую систему и формирующая собственную экологическую нишу. Реальный рост популяции описывается логическим уравнением Ферхюльста-Пирла

dN/dt= rN[(K-N)/K]

коэффициент рождаемости равен произведению показателя специфического роста (биотическим потенциалом) , исходной численности популяции и степени сопротивления среды обитания приросту популяции, где К- максимально возможное число особей, способных жить в данной среде.

В биоценозах все популяции видов связаны друг с другом сложной пищевой сетью. Солнечная энергия поступает в организмы животных из растений, которые черпают запасы вещества и энергии из неживой природы. В итоге любой биоценоз представляет некое единство со своим биотопом, создавая целостную систему, которую называют экосистемой . Организованная в экосистемы жизнь на Земле продолжается уже миллионы лет, не прерываясь. Экосистемы бывают разных масштабов, наземные и водные: пруд с его обитателями, озеро, море, океан, небольшой лес, целая тайга, степь, пустыня – все это природные экосистемы. Аквариум, сад, пшеничное поле – экосистемы, созданные человеком.

Наземные экосистемы, связанные с участками однородной растительности, называют биогеоценозами . Таковы, например, ельник кисличный, ельник зеленомошный, березняк разнотравный, сфагновое болото, луг, ковыльная степь и т.п.

В названии "биогеоценоз" подчеркивается тесная взаимосвязь ("ценоз") живых ("био–") и неживых ("гео–") компонентов на определенном участке земной поверхности. Учение о биогеоценозе и сам термин создал крупный российский ученый–ботаник В.Н.Сукачев.

Экосистем на Земле очень много. Существенным свойством каждой из них является круговорот веществ и потоки энергии .из-за большой роли живых организмов круговорот веществ в экосистемах часто называют биологическим круговоротом веществ .

Биологический круговорот веществ является главным условием существования экосистемы.

Круговорот веществ в биогеоценозе осуществляется благодаря наличию в нем четырех неотъемлемых компонентов

- Назовите неотъемлемые компоненты биогеоценоза .

1) абиотического компонента (запаса биогенных веществ и солнечной энергии); 2) продуцентов (создающих органическое вещество); 3) консументов (потребляющих органическое вещество); 4) редуцентов (разлагающих мертвое органическое вещество).

Энергия, химические вещества и организмы связаны между собой потоками энергии и круговоротом веществ

От чего зависит устойчивость экосистемы?

(Биогеоценозы (экосистемы) устойчивы лишь в том случае, когда все четыре компонента, входящие в их состав, поддерживают круговорот веществ достаточно полно.)

Круговорот веществ поддерживается в биогеоценозах (экосистемах) постоянным притоком все новых и новых порций энергии. Хотя по закону сохранения энергии она не исчезает бесследно, а лишь переходит из одной формы в другую, круговорота энергии в экосистемах быть не может. Расходуясь на жизнедеятельность организмов, усвоенная ими энергия постепенно переходит в тепловую форму и рассеивается в окружающем пространстве. Таким образом, деятельность экосистемы напоминает круговое вращение мельничного колеса (круговорот веществ) в потоке быстротекущей воды (поток энергии).

Одна и та же порция вещества и заключенная в нем энергия не могут бесконечно передаваться по сложной сети питания, связывающей организмы в биогеоценозе. На самом деле трофическая сеть состоит из переплетения коротких пищевых (трофических) цепей – последовательного ряда питающихся друг другом организмов, в котором можно проследить расходование первоначальной порции энергии. Каждое звено ряда называют трофическим уровнем .

Каково значение пищевых связей? (Пищевые связи между организмами играют важную роль. Во–первых, они обеспечивают передачу органического вещества и заключенной в нем энергии от одного организма к другому. Вместе, таким образом, уживаются виды, которые поддерживают жизнь друг друга. Во–вторых, пищевые связи служат механизмом регуляции численности популяций в природе. Пищевые отношения между организмами стоят заслоном на пути чрезмерного размножения отдельных видов, что делает природные сообщества более устойчивыми и стабильными.

1. Круговорот веществ и превращение энергии в экосистеме. Роль производителей, потребителей и разрушителей органических веществ в природе.

Источником энергии в естественной экосистеме является солнечный свет. Продуценты – производители (зеленые растения) запасают полученную солнечную энергию в органических веществах, создают пищу для всех остальных обитателей экосистемы. Служат источником органических веществ на Земле.

Консументы – потребители (травоядные, затем плотоядные животные) перерабатывают органические вещества. Их роль заключается в ускорении круговорота веществ в экосистеме. (Есть мнение, что сообщества могут быть устойчивы и без консументов).

Редуценты – разрушители (бактерии, грибы) разрушают органические вещества до неорганических. Разрушители завершают круговорот химических элементов, делают их доступными для усвоения растениями. Без редуцентов возникла бы нехватка минеральных солей, необходимых растениям, а планета была бы загромождена остатками живых существ и их экскрементов.

Некоторые экосистемы, лишенные солнечного света, не имеют в своем составе продуцентов. Примером могут быть сообщества больших океанских глубин. Источником энергии в таких экосистемах служат останки живых существ, оседающие из верхних слоев воды.

2. Многообразие пресмыкающихся, их приспособленность к наземному образу жизни. Объясните, почему они утратили свое господствующее положение на Земле. Назовите вымерших пресмыкающихся, обоснуйте причины их вымирания.

Класс пресмыкающихся представлен многочисленным отрядом Чешуйчатых, к которому относятся ящерицы и змеи. Отряд Черепахи и отряд Крокодилы отличаются своеобразным строением, сохранившим древние черты.

Для всех пресмыкающихся характерно развитие эмбрионов на суше, а не в воде. Это позволило пресмыкающимся заселять сушу независимо от наличия на ней водоемов. Кожа сухая, без желез, обычно покрытая чешуями, что предохраняет от потери влаги. Органы дыхания – ячеистые легкие. Дыхание происходит за счет расширения и сжатия грудной клетки, что обеспечивает более эффективную вентиляцию легких. В желудочке сердца формируется неполная перегородка, препятствующая смешиванию артериальной и венозной крови. Оплодотворение внутреннее. Яйца крупные, покрытые кожистой оболочкой у змей или известковой скорлупой у черепах и крокодилов. Поведение более сложное по сравнению с земноводными.

В мезозойской эре пресмыкающиеся были господствующей группой среди позвоночных и на суше, и в водоемах. Широко известны динозавры: травоядный бронтозавр, хищный тираннозавр, летающий ящер птеранодон. Называют следующие причины вымирания динозавров:



Расцвет покрытосеменных растений, содержащих алкалоиды, ядовитые для динозавров.

Похолодание климата, давшее существенные преимущества теплокровным птицам и млекопитающим.

Более совершенное поведение млекопитающих обеспечило более гибкое приспособление к меняющимся условиям окружающей среды по сравнению с пресмыкающимися.

3. Дайте научное обоснование факторов, сохраняющих и разрушающих здоровье человека. Вредные и полезные привычки, их влияние на состояние здоровья. Объясните, почему в последнее время становится престижным вести здоровый образ жизни.

Важнейшими факторами, способствующими сохранению здоровья, являются умеренность во всем: правильное питание, отказ от спиртного и курения, рациональный режим труда и отдыха, отказ от страстей, занятия физкультурой и физическим трудом. Связано это с тем, что посильные физические нагрузки тренируют сердечно-сосудистую и дыхательную системы, улучшают кровоснабжение не только задействованных мышц, но и всего организма в целом. Улучшается настроение и обмен веществ (есть данные, что полезно находиться на открытом воздухе в ранние утренние часы, когда состав солнечного спектра особенно благоприятен).

Сбалансированный рацион питания, включающий достаточное количество овощей и фруктов, обеспечивает организм всеми необходимыми белками и витаминами, клетчаткой. Переедание затрудняет работу пищеварительной системы и способствует ожирению.

Под страстями подразумевают преувеличение человеком значения чего-то (это могут быть игры, следование моде, карьера, влюбленность), что на самом деле этого значения не имеет. Страстью может стать работа, и даже творчество. Страсти истощают нервную систему, приводят к принятию нерациональных решений, которые не возникли бы в спокойном, уравновешенном состоянии. Общеизвестны пагубные последствия азартных игр, жажды наживы, фанатичного следования религиозным культам, идеологическим течениям и т.п. Успешной борьбе со страстями весьма способствует понимание человеком смысла жизни, стратегии устойчивого развития человеческой цивилизации, в основе которой лежит факт ограниченности природных ресурсов, необходимость разумного ограничения человеком своих потребностей.

С точки зрения физиологии, принципа доминанты, страсти можно рассматривать как доминирование потребностей, не важных и даже вредных для организма.

Спиртные напитки, курение, наркотики прежде всего опасны своим влиянием на нервную систему. У многих очень быстро вырабатывается физиологическая и психологическая зависимость, приводящая к алкоголизму, наркомании. В этом состоянии человек теряет контроль над своими поступками, никакая борьба со страстями невозможна. Нередки преступления ради денег или в состоянии агрессии. Не стоит забывать, что курение способствует возникновению рака легких, алкоголизм – язве желудка. Потеря самоконтроля увеличивает вероятность заражения ВИЧ-инфекцией и другими тяжелыми заболеваниями.

В развитых странах ведется борьба с курением в общественных местах, пропаганда здорового образа жизни. Связано это с тем, что затраты на здоровье нации окупаются, уменьшая количество заболеваний и повышая производительность труда. В России это встречает значительные затруднения, вызванные многолетним сокращением производства, коррупцией, отсутствием уверенности в завтрашнем дне, насаждением культа потребления, в том числе на государственных телеканалах. Следует понимать, что здоровый образ жизни, нравственная чистота, духовное богатство сами по себе являются ценностью, приносят человеку здоровье, счастье, стойкость в трудных жизненных ситуациях.

Билет № 16

1. Химический состав клетки. Роль воды и минеральных веществ в жизни клетки и организма.

В состав клетки входят неорганические вещества: вода, минеральные соли, – и органические: белки, жиры, углеводы, нуклеиновые кислоты.

Вода составляет до 80% массы клетки, играет важную роль:

все химические процессы в клетках происходят в водных растворах;

переносит питательные вещества, растения всасывают минеральные соли в растворенном виде;

с водой происходит удаление из организма вредных веществ;

большая теплоемкость воды уменьшает колебания температуры организма;

малая сжимаемость воды обеспечивает упругость (тургор) клетки;

испарение воды способствует охлаждению животных и растений.

Минеральные вещества:

участвуют в поддержании гомеостаза, регулируя поступление воды в клетку, кислотность (pH) среды (буферные системы клетки);

разность концентрации ионов натрия, калия, водорода и др. создают на мембранах клеток разность потенциалов, необходимую для синтеза АТФ, передачи нервных импульсов;

минеральные соли, в первую очередь, фосфаты и карбонаты кальция, придают твердость костной ткани и раковинам моллюсков.

2. Животные – возбудители и переносчики заболеваний человека. Профилактика заболеваний энцефалитом, малярией, дизентерией, чесоткой и др.

Дизентерийная амеба может вызывать тяжелое заболевание желудочно-кишечного тракта – дизентерию.

Дизентерия бывает бактериальная и амебная. Амебная встречается преимущественно в тропическом и субтропическом климате.

Заражение происходит через пищу, воду, грязные руки. Амебы проникают в стенку толстой кишки, вследствие чего образуются язвы. Появляются боли в животе, учащенный стул, кровь в испражнениях, температура обычно не повышена. Профилактика заключается в мытье рук перед едой и после уборной, тщательном мытье овощей и фруктов, кипячении воды.

Профилактика включает своевременное лечение больных, что предотвращает заражение комаров и распространение болезни; обработку помещений от комаров. В водоемы выпускаются рыбки гамбузии, поедающие личинок комаров.

Энцефалит – воспаление головного мозга, – может возникать при гриппе, бешенстве. Клещевой энцефалит – вирусное заболевание, переносчиком которого являются кровососущие иксодовые клещи. Через 2-14 дней после укуса клеща внезапно повышается температура, возникают мучительные головные боли, рвота. Может привести к параличу. Профилактика: в неблагополучных районах не посещать лес в период высокой активности клещей (май-июнь), в дальнейшем заправлять брюки в носки, рубашку в брюки, регулярно проводить осмотр на наличие клещей. Применять репелленты, проходить вакцинацию.

Чесотку вызывает чесоточный клещ, прогрызающий ходы в роговых слоях кожи, напоминающие сероватую царапину. Появляется сильный зуд, сохраняющийся некоторое время и после проведенного лечения. Заражение происходит от человека к человеку при прямом контакте, а также через одежду, постельное белье. Профилактика: регулярно мыть руки с мылом, не носить чужую одежду, не пользоваться чужим бельем.

3. Используя знания о составе и группах крови, дайте научное обоснование значения переливания крови, ее свертывания. Почему при взятии проб крови на анализ следует пользоваться одноразовыми инструментами?

У человека выделяют четыре основные группы крови. В зависимости от наличия в эритроцитах агглютиногенов А или В, человек может иметь группу:

А (содержится А),

В (содержится В),

Переливать кровь можно только ту, которая не содержит агглютиногенов (буквы), которых нет у пациента: нулевую всем, АВ подходит только для АВ, А – для А и АВ, В – для В и АВ. При переливании неподходящей группы происходит склеивание эритроцитов (агглютинация) с последующим разрушением (гемолизом).

Также необходимо учитывать наличие в эритроцитах вещества, называемого резус-фактором (содержится у 85% людей). Агглютинация наступает при переливании резус-отрицательному пациенту крови от резус-положительного донора.

При взятии крови на анализ следует пользоваться одноразовыми инструментами, т.к. это самый надежный способ защиты от заражения ВИЧ и другими заболеваниями, передающимися через кровь. Стерилизация многоразовых инструментов не столь надежна, т.к. может подвести «человеческий фактор».

Круговорот веществ и превращение энергии - основа существования биосферы

Существование биосферы связано с деятельностью живых организмов, сопровождающейся извлечением из окружающей среды энергии и минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, т.е. циркуляция веществ между литосферой, атмосферой, гидросферой и живыми организмами. Химические элементы, входящие в состав живого, обычно циркулируют в биосфере по характерным путям: из внешней среды в организмы и опять во внешнюю среду. Для биогенной миграции свойственно накопление химических элементов в организмах (аккумуляция) и их высвобождение в результате минерализации отмершей биомассы (детрита). Такие пути циркуляции химических веществ (в большей или меньшей степени замкнутые), протекающие с использованием солнечной энергии через растительные и животные организмы, называют биогеохимическими круговоротами.

В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Связанная в органических веществах энергия по ступеням пищевой цепи уменьшается, потому что большая ее часть поступает в окружающую среду в виде тепла или же тратится на осуществление процессов, происходящих в организмах. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения, поэтому в биосфере наблюдается поток энергии. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.

Круговорот воды. Для наземных биогеоценозов большое значение имеет доступность пресной воды. Из всего запаса воды на Земле (1300 млн км 3) пресная вода составляет всего около 3%. Вода в виде водяного пара испаряется с поверхности морей и океанов и переносится воздушными потоками на различные расстояния. Основная масса ее находится в виде льда (75%), в атмосфере циркулирует только 0,35%. Большая часть атмосферных осадков задерживается растительностью и в почву попадает только 25-35%. Испарение со свободной поверхности и испарение растительными тканями возвращают воду в атмосферу.

Круговорот углерода. Углерод, содержащийся в атмосфере в виде С0 2 , является одним из исходных компонентов для фотосинтеза растений и цианобактерий, затем вместе с органическим веществом потребляется гетеротрофными организмами. При дыхании растений и животных, а также редуцентами в виде С0 2 углерод возвращается в атмосферу. Еще одним потребителем углерода являются морские организмы. Они используют соединения углерода для построения раковин, скелетных образований. В дальнейшем остатки отмерших морских организмов образуют на дне морей и океанов мощные отложения известняков. Цикл круговорота углерода замкнут не полностью. Углерод может выходить из него на довольно длительный срок в виде залежей каменного угля, известняков, торфа, гумуса и др. Человек нарушает отрегулированный круговорот углерода в ходе интенсивной хозяйственной деятельности. За счет сжигания огромного количества ископаемого топлива содержание углекислого газа в атмосфере за XX в. возросло на 25%. Последствием этого может стать усиление парникового эффекта.

Круговорот азота. Основные запасы азота сосредоточены в атмосфере в форме молекулярного азота, недоступного для растений, так как они способны использовать его только в виде неорганических соединений. К прямой фиксации атмосферного молекулярного азота способны лишь некоторые прокариотические организмы: бактерии и цианобактерии. Наиболее активными азотфиксаторами являются клубеньковые бактерии, поселяющиеся в клетках корней бобовых растений. Они переводят молекулярный азот в соединения, усваиваемые растениями. После отмирания растений и разложения клубеньков почва обогащается органическими и минеральными формами азота. Значительную роль в обогащении водной среды азотистыми соединениями играют цианобактерии. Небольшое количество азотистых соединений образуется в атмосфере во время гроз. Вместе с дождевыми водами они поступают в водную или почвенную среду. Небольшая часть азотистых соединений поступает при извержениях вулканов. Азот - необходимый компонент важнейших органических соединений: белков, нуклеиновых кислот, АТФ и др. Азотсодержащие органические вещества отмерших растений и животных, а также мочевина и мочевая кислота, выделяемые животными и грибами, расщепляются гнилостными бактериями до аммиака. Основная масса образующегося аммиака окисляется нитрифицирующими бактериями до нитритов и нитратов, после чего вновь используется растениями. Некоторая часть аммиака уходит в атмосферу и вместе с углекислым газом и другими газообразными веществами выполняет функцию удержания тепла планеты. Различные формы азотистых соединений почвы и водной среды могут восстанавливаться некоторыми видами бактерий до оксидов и молекулярного азота. Этот процесс называется денитрификацией. Его результатом является обеднение почвы и воды соединениями азота и насыщение атмосферы молекулярным азотом. Процессы нитрификации и денитрификации были полностью сбалансированы вплоть до периода интенсивного использования человеком азотных минеральных удобрений в целях получения больших урожаев сельскохозяйственных растений.

Круговорот фосфора. Фосфор находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами (образование гуано). Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

От того, насколько регулярно осуществляется круговорот того или иного биогенного элемента, зависит продуктивность биогеоценоза, что имеет большое значение для сельскохозяйственного производства и лесного хозяйства. Сбалансированность биологического круговорота, т.е. его уравновешенность, следовательно, и устойчивость экосистемы определяются максимально возможным числом связей между видами в пищевой сети.

В продолжение темы:
Культура

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.comПодписи к...

Новые статьи
/
Популярные