Методы контроля эффективности стерилизации. Как проводится контроль стерилизации? Стерилизация: понятия, методы, режимы

Контроль эффективности стерилизации осуществляется физическими, химическими и бактериологическими методами.

К физическим методам контроля относятся: измерение температуры, давления и времени применения стерилизации.

Для проведения химического контроля на протяжении десятилетий применялись химические вещества, имеющие температуру плавления, близкую к температуре стерилизации. Такими веществами были: бензойная кислота - для паровой стерилизации; сахароза, гидрохинон и некоторые другие -для контроля воздушной стерилизации. Если происходило расплавление и изменение цвета указанных веществ, то результат стерилизации признавался удовлетворительным. Поскольку применение вышеуказанных индикаторов является недостаточно достоверным, в настоящее время внедрены в практику контроля термических методов стерилизации химические индикаторы, цвет которых изменяется под воздействием температуры, адекватной для конкретного режима, для определенного времени, необходимого для реализации данного режима. По изменению окраски индикаторов судят об основных параметрах стерилизации - температуре и продолжительности стерилизации. С 2002 года в России введен в действие ГОСТ РИСО 11140-1 «Стерилизация медицинской продукции. Химические индикаторы. Общие требования», в котором химические индикаторы распределены на шесть классов:

К 1 классу отнесены индикаторы внешнего и внутреннего процесса, которые размещаются на наружной поверхности упаковки с медицинскими изделиями или внутри наборов инструментов и операционного белья. Изменение цвета индикатора указывает на то, что упаковка подверглась процессу стерилизации.

Ко 2 классу относят индикаторы, которые не контролируют параметры стерилизации, а предназначенные для применения в специальных тестах, например, на основании таких индикаторов оценивают эффективность работы вакуумного насоса и наличие воздуха в камере парового стерилизатора.

К 3 классу относятся индикаторы, при помощи которых определяется один параметр стерилизации, например, минимальная температура. Однако они не дают информации о времени воздействия температуры.

К 4 классу относят многопараметровые индикаторы, изменяющие цвет при воздействии нескольких параметров стерилизации. Примером таких индикаторов являются индикаторы паровой и воздушной стерилизации одноразового применения ИКПВС-«Медтест».

К 5 классу относят интегрирующие индикаторы, реагирующие на все критические параметры метода стерилизации.

К 6 классу относят индикаторы-эмуляторы. Индикаторы откалиброваны по параметрам режимов стерилизации, при которых они применяются. Эти индикаторы реагируют на все критические параметры метода стерилизации. Эмулирующие индикаторы являются наиболее современными. Они четко регистрируют качество стерилизации при правильном соотношении всех параметров - температуры, насыщенного пара, времени. При несоблюдении одного из критических параметров индикатр не срабатывает. Среди отечественных термовременных индикаторов используются индикаторы «ИС-120», «ИС-132», «ИС-160», «ИС-180» фирмы «Винар» или индикаторы паровой («ИКПС-120/45», «ИКПС-132/20») и воздушной («ИКПВС-180/60» и «ИКВС-160/150») стерилизации одноразового применения ИКВС фирмы «Медтест».

Все операции с индикаторами - выемка, оценка результатов - осуществляются персоналом, проводящим стерилизацию.

Оценку и учет результатов контроля проводят, оценивая изменения цвета начального состояния термоиндикаторной метки каждого индикатора, сравнивая с цветовой меткой Эталона сравнения.

Если цвет конечного состояния термоиндикаторной метки всех индикаторов соответствует цветовой метке Эталона сравнения, это свидетельствует о соблюдении требуемых значений параметров режимов стерилизации в стерилизационной камере.

Допускаются различия в интенсивности глубины окраски термоиндикаторной метки индикаторов, обусловленные неравномерностью допустимых значений температуры в различных зонах стерилизационной камеры. Если термоиндикаторная метка хотя бы одного индикатора полностью или частично сохранила цвет, легко отличимый от цвета эталонного состояния, это свидетельствует о несоблюдении требуемых значений параметров режимов стерилизации в стерилизационной камере.

Индикаторы и Эталоны сравнения должны совпадать по номерам партий. Запрещается оценивать результаты контроля стерилизации, используя индикаторы разных партий.

Оценку соответствия изменения цвета термоиндикаторной метки в сравнении с Эталоном проводят при освещенности не менее 215 лк, что соответствует матовой лампе накаливания 40 Вт, с расстояния не более 25 см. Для проведения бактериологического контроля в настоящее время применяются биотесты, имеющие дозированное количество спор тест-культуры. Существующая методика позволяет оценивать эффективность стерилизации не ранее чем через 48 часов, что не позволяет применять уже простерилизованные изделия до получения результатов бактериологического контроля.

Биологический индикатор представляет собой препарат из патогенных споро-образующих микроорганизмов с известной высокой устойчивостью к данному типу стерилизационного процесса. Задачей биологических индикаторов является подтверждение способности стерилизационного процесса убивать устойчивые микробные споры. Это наиболее критичный и достоверный тест стерилизационного процесса. Применяются биологические индикаторы в качестве контроля загрузки: если результат положительный (микробный рост), то использовать данную загрузку нельзя и необходимо отозвать все предыдущие загрузки до последнего отрицательного результата. Для получения достоверного биологического ответа следует использовать только те биологические индикаторы, которые соответствуют международным стандартам ЕК 866 и ISO 11138/11135. При использовании биологических индикаторов возникают определенные трудности - необходимость наличия микробиологической лаборатории, обученного персонала, продолжительность инкубации многократно превышает длительность стерилизации, необходимость карантина (невозможность использования) простерилизованных изделий до получения результатов. Из-за указанных выше трудностей в применении биологического метода в амбулаторной стоматологической практике обычно используется физический и химический метод контроля эффективности стерилизации.

В последние годы отмечают появление и распространение патогенных микроорганизмов

высоко-резистентных к действию факторов окружающей среды. Поэтому ужесточаются спосо

бы стерилизации и особое значение придают правильному выбору режима стерилизации

тщательному контролю ее качества. При выборе режима стерилизации необходимо учитывать

исходную контаминацию, которую оценивают не только количественно, но и качественно,

определяя устойчивость микроорганизмов к стерилизующему фактору. Исходная контамина

ция изменяется в зависимости от времени года и источника сырья. Определение стерильности. V

готовой продукции путем выборочного контроля не дает гарантии стерильности всей партии

поэтому необходимо строго соблюдать режим стерилизации.

Контроль эффективности стерилизации осуществляют несколькими методами

(Воробьёв А.А.с соавт., 2002): По

1) по показаниям приборов (мановакуумметров, термометров, таймеров);

2) физико-химические тесты (вместе со стерилизуемым материалом в аппарат закладываются ампулы с кристаллами веществ, имеющие определенную точку плавления и меняющие

консистенцию или цвет при достижении определенной температуры стерилизуемого материала, например, антипирин - температура плавления 113°С, резорцин - 110°С, бензойную кислоту - 121 °С). В состав химических тестов вводят анилиновый краситель фуксин, генцианвиолет и др.), который равномерно окрашивает вещество при его расплавлении. Контроль режима стерилизации автоклавов химическим способом проводят при каждой загрузке автоклава. В настоящее время для контроля параметров режимов работы паровых и воздушных стерилизаторов используются специальные бумажные термометры.

Химические индикаторы одноразового применения, типа ИС (фирма «Винар», Россия),

представляющие полоску бумаги с нанесенным на нее слоем индикаторной смеси и пред-

назначенные для оперативного визуального контроля не только температуры, но и време-

стерилизации (ИС-120, ИС-132). Бумажные полоски закладываются в разных местах со

стерилизуемым материалом и после окончания цикла сверяют изменение окраски индика-

тора с эталоном. Если индикатор светлее эталона, стерилизуемые объекты подлежат по-

вторной стерилизации;

С 30 3) биологические тесты (в аппарат помещают флакончики с салфетками или бумажными дисками, пропитанными взвесью термостойкого спорообразующего микроба (Bacillus stearotermophilus) для контроля паровых или Bacillus licheniformis для контроля воздушных

I стерилизаторов) и после стерилизации их инкубируют в МПБ - прозрачный бульон, если

споры погибли, не должен мутнеть). Контроль режима стерилизации с использованием


Биотеста со спорами тест-культуры Bacillus stearotermophilus проводится еже-

квартально;

4) молекулярно-генетические методы контроля - генидикация могут использоваться в

случае оценки стерилизации в отношении трудно-культивируемых бактерий (анаэробная

группа) или вирусов. С этой целью применяют полимеразную цепную реакцию или об-

ратную гибридизацию ДНК с праймерами соответствующих видов микробов (Царёв В.Н.

с соавт., 2002).

Показателями эффективной работы стерилизационной аппаратуры являются: отсутствие

роста тест-культуры в сочетании с удовлетворительными результатами физического и химичекого контроля, либо отсутствие маркерных генов по данным ПЦР и гибридизации ДНК.

Контроль стерильности бактериологическим методом проводят путем прямого посева

(погружения) изделий в питательные среды (мелкие или детали разъемных изделий, инструменты - целиком, от шовного или перевязочного материала - отрезанные фрагменты) или (для крупных изделий) методом смывов. Материалом обязательно засевают две среды - тиогликолевую (для роста бактерий) и среду Сабуро (для роста грибов). Посевы на тиогликолевой среде выдерживают при 32°С, на среде Сабуро - при 22°С в течение 7 суток (для изделий после тепловой стерилизации). При отсутствии роста во всех пробирках (флаконах) делают заключение о стерильности изделий.

Р» и 7. Вид, штамм, колония, чистая культура микроорганизмов

Исследуемый материал от больного часто представляет смесь микроорганизмов. Выбор исследуемого материала зависит от вида заболевания и преимущественной локализации возбудителя на определенном этапе его развития (патогенеза). Материалом может служить кровь, ликвор, раневое отделяемое, мокрота, испражнения, моча и т.д.

При посеве исследуемого материала на питательные среды необходимо получить не смесь, а отдельные виды микроорганизмов. Микроорганизмы, находящиеся в питательной среде получили название культуры микроорганизмов. Культуры могут быть чистыми и смешанными. Поэтому основной задачей является разобщение культур и получение изолированных колоний. Изолированная колония, как результат размножения одной микробной клетки и состоящая из одного вида клеток, является основой для получения чистой культуры. Изучение и дальнейшая идентификация полученных культур микробов должна проводиться только в виде однородных популяций (чистых культур).

Под понятием «чистая культура» подразумевается популяция микроорганизмов, принадлежащих одному виду, полученная как потомство одной клетки на стерильной питательной среде методом механического разобщения. Культура может расти в виде отдельных колоний на плотной питательной среде. Штамм - это совокупность микробов одного вида, выделенных из одного источника в разное время или из разных источников.

Вид - совокупность микроорганизмов, имеющих единое происхождение и генотип, сходных по морфологическим и биологическим свойствам.

Таким образом, чистые культуры представлены микроорганизмами одного штамма и вида.

Популяция микробов, являющаяся потомством одной родительской клетки, полученная методом микроманипуляций, называется клоном. Клонирование бактериальных популяций возможно как на жидких, так и на плотных питательных средах.

Успех выделения чистой культуры определяется правильностью выбора питательной среды и условий культивирования. Универсальной питательной среды, использование которой позволит выделить любые микроорганизмы из любого исследуемого материала, не существует. Поэтому с учетом физиологических особенностей возможных возбудителей заболевания производится посев материала на определенную питательную среду или комплекс питательных сред (специальные, элективные, дифференциально-диагностические). Для некоторых микроорганизмов требуются и особые условия культивирования (анаэробные, микроаэрофильные, с повышенным содержанием углекислоты).

Бактерии характеризуются высоким темпом размножения на различных питательных средах, который характеризуется временем генерации.

Время генерации - это время между двумя делениями клетки, проходящее от момента появления клетки до момента деления (например, время генерации кишечной палочки - 20 мин, возбудителя туберкулеза - 14 час, табл. 16). Скорость размножения зависит от вида бактерий и условий культивирования (химического состава питательной среды, её агрегатного состояния, рН, температуры, аэрации, газового состава, наличия питательных веществ и стимуляторов роста и т.д.).

Контроль стерилизации включает контроль работы стерилизаторов, проверку значений параметров режимов стерилизации и оценку ее эффективности.

Контроль работы стерилизаторов проводят в соответствии с действующими документами следующими методами: физическим (с использованием контрольно-измерительных приборов), химическим (с использованием химических индикаторов) и бактериологическим (с использованием биологических индикаторов) . Параметры режимов стерилизации контролируют физическим и химическим методами.

Эффективность стерилизации оценивают на основании результатов бактериологических исследований при контроле стерильности изделий медицинского назначения.

Контроль стерильности проводят путем прямого посева изделий (погружения) в питательные среды или методом смыва стерильным пинцетом и стерильной марлевой салфеткой, увлажненной питьевой водой протирают изделие помещают каждую салфетку в отдельную пробирку (флакон) с питательной средой. Материал не стерилен при росте микрофлоры (стафилококков, кишечной палочки, сальмонелл, синегнойной палочки).

Физические методы

Физические методы контроля осуществляются с помощью средств измерения температуры (термометры, термопары), давления (манометры,

мановакуумметры) и времени (таймеры). Современные стерилизаторы оснащены также записывающими устройствами, фиксирующими отдельные параметры каждого цикла стерилизации.

Химические методы

Индикаторы предназначены для контроля критических параметров процесса стерилизации. Критическими параметрами являются: для парового метода стерилизации - температура, время воздействия данной температуры, водяной насыщенный пар; для воздушного метода стерилизации - температура и время воздействия данной температуры; для газовых методов стерилизации - концентрация используемого газа, температура, время воздействия, уровень относительной влажности; для радиационной стерилизации - полная поглощенная доза.

В 1995 году международная организация по стандартизации (ISO) опубликовала документ "Стерилизация медицинских изделий. Химические индикаторы. Часть 1".

С января 2002 года в России введен в действие ГОСТ Р ИСО 11140-1 "Стерилизация медицинской продукции. Химические индикаторы. Общие требования". Согласно этому документу химические индикаторы распределены на шесть классов.

Индикаторы и интеграторы

Основные противоэпидемические мероприятия

для предотвращения возникновения ВБИ

Стерилизация – удаление или уничтожение всех живых микроорганизмов (вегетативных и споровых форм) внутри или на поверхности предметов. Стерилизация проводится различными методами: физическими, механическими и химическими.

Методы стерилизации

Физические методы. При стерилизации физическими методами используют действие высоких температур, давления, ультрафиолетового облучения и др.

Самым распространенным методом стерилизации является воздействие высокой температуры. При температуре, приближающейся к 100 0 С, происходит гибель большинства патогенных бактерий и вирусов. Споры почвенных бактерий-термофилов погибают при кипячении в течение 8,5 часов. Наиболее простой, но надежный вид стерилизации – прокаливание . Его применяют при поверхностной стерилизации негорючих и теплоустойчивых предметов непосредственно перед их использованием.

Другим простым и легко доступным методом стерилизации считается кипячение . Этот процесс проводят в стерилизаторе – металлической коробке прямоугольной формы с двумя ручками и плотно закрывающейся крышкой. Внутри расположена вынимающаяся металлическая сетка с ручками по бокам, на которую кладут стерилизуемый инструмент. Основной недостаток метода заключается в том, что он не уничтожает споры, а только вегетативные формы.

При паровой стерилизации необходимо выполнение определенных условий, которые гарантируют ее эффективность и сохранение стерильности изделий в течение определенного срока. Прежде всего, стерилизация инструментов, операционного белья, перевязочного материала должна проводиться в упаковке. С этой целью используют: стерилизационные коробки (биксы), двойную мягкую упаковку из бязи, пергамент, влагопрочную бумагу (крафт-бумага), полиэтилен высокой плотности.

Обязательное требование к упаковке – герметичность. Сроки сохранения стерильности зависят от вида упаковки и составляют трое суток для изделий простерилизованных в коробках без фильтров, в двойной мягкой упаковке из бязи, бумаги мешочной влагопрочной.

Стерилизация сухим жаром . Процесс стерилизации сухим жаром проводят в сухожаровом шкафу (в печи Пастера и др.) – металлическом шкафу с двойными стенками. В корпусе шкафа расположены рабочая камера, в которой имеются полки для размещения предметов для обработки и нагревательные элементы, которые служат для равномерного нагрева воздуха в рабочей камере

Режимы стерилизации:

- температура 150 0 С – 2 часа;

- температура 160 0 С -170 0 C – 45 минут-1час;

- температура 180 0 C – 30 минут;

- температура 200 0 C – 10-15 минут.

Необходимо помнить, что при температуре 160 0 С бумага и вата желтеют, при более высокой температуре – сгорают (обугливаются). Началом стерилизации является тот момент, когда температура в печи достигает нужной величины. После окончания стерилизации печь выключается, прибор остывает до 50 0 С, после чего из него вынимают простерилизованные предметы.

Стерилизация текучим паром . Этот вид стерилизации производится в аппарате Коха или в автоклаве при незавинченной крышке и открытом выпускном кране. Аппарат Коха представляет собой металлический полый цилиндр с двойным дном. Стерилизуемый материал загружают в камеру аппарата не плотно, для того, что бы обеспечить возможность наибольшего контакта его с паром. Начальный подогрев воды в приборе происходит в течение 10-15 минут. Текучим паром стерилизуют материалы, которые разлагаются или портятся при температуре выше 100 0 С – питательные среды с углеводами, витаминами, растворы углеводов и т. п.

Стерилизацию текучим паром проводят дробным методом – при температуре не выше 100 0 С по 20-30 минут в течение 3-х дней. При этом вегетативные формы бактерий погибают, а споры сохраняют жизнеспособность и прорастают в течение суток при комнатной температуре. Последующее прогревание обеспечивает гибель этих вегетативных клеток, появляющихся из спор в промежутках между этапами стерилизации.

Тиндализация – метод дробной стерилизации, при котором прогревание стерилизуемого материала проводится при температуре 56-58 0 С в течение часа 5-6 дней подряд.

Пастеризаци я – однократное нагревание материала до 50-65 0 С (в течение 15-30 минут), 70-80 0 С (в течение 5-10 минут). Используется для уничтожения бесспоровых форм микробов в пищевых продуктах (молоко, соки, вино, пиво).

Стерилизация паром под давлением . Стерилизация проводится в автоклаве под давлением обычно (посуда, физиологический раствор, дистиллированная вода, питательные среды, не содержащие белков и углеводов, различные приборы, изделия из резины) в течение 20-30 минут при температуре 120-121 0 С (1 атм.), хотя могут быть использованы и другие соотношения между временем и температурой в зависимости от стерилизуемого объекта.

Любые растворы, содержащие белки и углеводы, стерилизуют в автоклаве при 0,5 атм. (115 0 С) в течение 20-30 минут

Любой инфицированный микроорганизмами (заразный) материал стерилизуют при давлении в 1,5 атм. (127 0 С) – 1 час, или при давлении 2,0 атм. (132 0 С) – 30 минут.

Стерилизация облучением . Излучение может быть неионизирующим (ультрафиолетовое, инфракрасное, ультразвуковое, радиочастотное) и ионизирующим – корпускулярным (электроны) или электромагнитным (рентгеновские лучи или гамма-лучи).

Ультрафиолетовое облучение (254 нм) обладает малой проникающей способностью, поэтому требует достаточно длительного воздействия и используется в основном для стерилизации воздуха, открытых поверхностей в помещениях.

Ионизирующее излучение , в первую очередь, гамма-облучение успешно применяется для стерилизации в промышленных условиях медицинских изделий из термолабильных материалов, поскольку позволяет быстро облучать материалы еще на стадии производства (при любой температуре и герметичной упаковке).Используется для получения стерильных одноразовых пластмассовых изделий (шприцы, системы для переливания крови, чашки Петри), и хирургических перевязочных и шовных материалов.

Механические методы . Фильтры задерживают микроорганизмы благодаря пористой структуре матрикса, но для пропускания раствора через фильтр требуется вакуум или давление, поскольку сила поверхностного натяжения при таком малом размере пор не дает жидкостям фильтроваться.

Существуют 2 основных типа фильтров – глубинные и фильтрующие. Глубинные фильтры состоят из волокнистых или гранулированных материалов (асбест, фарфор, глина), которые спрессованы, свиты или связаны в лабиринт проточных каналов, поэтому четкие параметры размера пор отсутствуют. Частицы задерживаются в них в результате адсорбции и механического захвата в матриксе фильтра, что обеспечивает достаточно большую емкость фильтров, но может приводить к задержке части раствора.

Фильтрующие фильтры имеют непрерывную структуру, и эффективность захвата ими частиц определяется в основном соответствию их размеру пор фильтра. Мембранные фильтры имеют низкую емкость, их эффективность не зависит от скорости протока и перепада давлений, а фильтрат почти или совсем не задерживается.

Мембранная фильтрация в настоящее время широко применяется для стерилизации масел, мазей и растворов, неустойчивых к нагреванию, – растворы для внутривенных инъекций, диагностические препараты, растворы витаминов и антибиотиков, среды для культур тканей и т.д.

Химические методы. Химические методы стерилизации, связанные с использованием химических веществ, обладающих явно выраженной антимикробной активностью, делятся на 2 группы: а) стерилизация газами; б) растворами (известна как дезинфекция).

Химические методы стерилизации газами применяют в лечебно-профилактических учреждениях для обеззараживания медицинских материалов и оборудования, которые нельзя стерилизовать другими способами (оптические приборы, кардиостимуляторы, аппараты искусственного кровообращения, эндоскопы, изделия из полимеров, стекла).

Бактерицидными свойствами обладают многие газы (формальдегид, окись пропилена, озон, надуксусная кислота и метилбромид), но шире всего используется окись этилена, поскольку она хорошо совместима с различными материалами (не вызывает коррозию металла, порчи обрабатываемых изделий из бумаги, резины и всех марок пластмасс). Время экспозиции при использовании газового метода стерилизации варьирует от 6 до 18 часов в зависимости от концентрации газовой смеси и объема специального аппарата (емкости) для этого вида стерилизации. Стерилизация растворами применяется при обработке больших поверхностей (пространств) или медицинских приборов, которые не могут быть обеззаражены другими методами.

Предстерилизационная обработка . Согласно требованиям отраслевого стандарта большинство изделий медицинского назначения из металла, стекла, пластмасс, резины проходят предстерилизационную обработку, состоящую из нескольких этапов:

Замачивание в моющем растворе при полном погружении изделия в дезинфицирующий раствор в течение 15 минут;

Мойка каждого изделия в разобранном виде в моющем растворе в ручном режиме в течение 1 минуты;

Ополаскивание под проточной водой хорошо промытых изделий в течение 3-10 минут;

Сушка горячим воздухом в сушильном шкафу.

Контроль качества предстерилизационной очистки изделий медицинского назначения на наличие крови проводят путем постановки амидопириновой пробы. Остаточные количества щелочных компонентов моющего средства определяют с помощью фенолфталеиновой пробы.

Согласно требованиям этого же ОСТа обязательным условием стерилизации растворами изделий медицинского назначения является полное погружение изделий в стерилизационный раствор в разобранном виде, с заполнением каналов и полостей, при температуре раствора не менее 18°С .

После стерилизации изделия быстро извлекают из раствора с помощью пинцетов или корнцангов, удаляют раствор из каналов и полостей, затем дважды последовательно промывают простерилизованные изделия стерильной водой.

Простерилизованные изделия используют сразу по назначению или помещают в стерильную емкость, выложенную стерильной простыней, и хранят не более 3-х суток. Препараты, используемые для стерилизации, классифицируют по группам: кислоты или щелочи, перекиси (6% раствор перекиси водорода), спирты (этиловый, изопропиловый), альдегиды (формальдегид, глутаровый альдегид), галогены (хлор, хлорамин, иодофоры – вескодин), четвертичные аммониевые основания, фенольные соединения (фенол, крезол), 20% Бианол, 20% Колд-Спор. Кроме того, в качестве удобных и экономичных дезинфицирующих растворов могут использоваться универсальные препараты, т.е. позволяющие проводить обеззараживание от всех форм микроорганизмов (бактерий, в том числе микобактерий туберкулеза; вирусов, включая ВИЧ; патогенных грибов), или комбинированные препараты («Дезэффект», «Аламинал», «Септодор», «Виркон»), совмещающие одновременно два процесса – дезинфекцию и предстерилизационную обработку.

Биологическая стерилизация основана на применении антибиотиков; используют ограниченно.

Контроль стерилизации

Контроль стерилизации осуществляется физическими, химическими и биологическими методами.

Физический метод контроля осуществляют с помощью средств измерений температуры (термометры) и давления (манометры).

Химический метод контроля предназначен для оперативного контроля одного или нескольких в совокупности режимов работы паровых и воздушных стерилизаторов. Осуществляют его с помощью химических тестов и термохимических индикаторов. Химические тесты – это запаянная с обоих концов стеклянная трубка, заполненная смесью химических соединений с органическими красителями, или только химическим соединением, изменяющим свое агрегатное состояние и цвет при достижении для него определенной температуры плавления. Упакованные химические тесты нумеруют и размещают в разных контрольных точках паровых и воздушных стерилизаторов. Термохимические индикаторы представляют собой полоски бумаги, на одной стороне которых нанесен индикаторный слой, изменяющий свой цвет на цвет эталона при соблюдении температурных параметров режима стерилизации.

Биологический метод предназначен для контроля эффективности работы стерилизаторов на основании гибели спор тест-культур. Осуществляют его с помощью биотестов . Биотест – дозированное количество тест-культуры на носителе, например, на диске из фильтровальной бумаги, или помещенное в упаковку (стеклянные флаконы для лекарственных средств или чашечки из фольги). В качестве тест-культуры для контроля работы парового стерилизатора используются споры Bacillus stea r othermophilus ВКМ В-718, а воздушного стерилизатора – споры Bacillus licheniformis . После стерилизации тесты помещают на питательную среду. Отсутствие роста на питательной среде свидетельствует о гибели спор во время стерилизации.

Биологический контроль. Этот вид контроля проводят 2 раза в год. Для этого используют биотесты, предназначенные для конкретного вида паровой или суховоздушной стерилизации.

Пронумерованные пакеты с биотестами размещают в контрольных точках стерилизатора. После проведенной стерилизации в пробирки с биотестами вносят 0,5 мл цветной питательной среды, начиная со стерильной пробирки для контроля питательной среды и заканчивая контрольным тестом, не подвергавшимся стерилизации (контроль культур). Далее пробирки инкубируют. После чего проводят учет изменения цвета питательной среды. В контроле (стерильная проба) цвет среды не изменяется. В пробирке с контролем культуры цвет среды должен измениться на цвет указанный в паспорте, что свидетельствует о наличии жизнеспособных спор.

Работа считается удовлетворительной, если цвет питательной среды во всех биотестах не изменился. Результаты регистрируют в журнале.

При необходимости контроля за стерильностью медицинских изделий, подвергнутых стерилизации, лаборант бактериологической лаборатории или операционная сестра под руководством сотрудников баклаборатории осуществляет забор проб на стерильность.

Центральное стерилизационное отделение в лпу (цсо).

Задача центрального стерилизационного отделения (ЦСО) состоит в обеспечении лечебно-профилактических учреждений стерильными изделиями медицинского назначения: хирургическими инструментами, шприцами, иглами, контейнерами, хирургическими перчатками, лейкопластырями, перевязочными и шовными материалами и др.

Функции центрального стерилизационного отделения (ЦСО):

Прием, хранение различных материалов до их обработки и стерилизации;

Разборка, выбраковка, учет изделий;

Предстерилизационная очистка (мытье, сушка);

Комплектование, упаковка, укладка в стерилизационную тару;

Стерилизация изделий;

Контроль качества предстерилизационной очистки и стерилизации;

Ведение документации и строгий учет приема и выдачи изделий;

Выдача стерильных изделий больницам, поликлиникам.

Помещения любого центрального стерилизационного отделения (ЦСО) обычно подразделяются на 2 зоны: нестерильную и стерильную. Структура ЦСО предусматривает последовательное прохождение обрабатываемыми изделиями ряда этапов, начиная от приема и сортировки, стерилизации, хранения простерилизованных изделий, и выдачи их для проведения соответствующих манипуляций.

В нестерильной зоне располагаются: моечная, комната изготовления, укладки и упаковки перевязочных материалов, комната обработки перчаток, стерилизационная (загрузочная сторона стерилизатора, нестерильная половина), комната контроля, комплектации и упаковки инструментов, кладовая упаковочных материалов, кабинет персонала, санитарный узел.

В стерильной зоне располагаются: стерилизационная (разгрузочная сторона стерилизатора, если они шкафного типа), склад для стерильных инструментов, экспедиция.

Уборку производственных помещений ЦСО проводят 1 раз в день с обязательным применением дезинфицирующих средств. В ЦСО должна быть обязательно оборудована приточно-вытяжная вентиляция. Полы в этом отделении должны быть покрыты гидроизоляцией, обложены плиткой или покрыты линолеумом. Потолки покрашены масляной краской.

При планировании работы ЦСО необходимо предусматривать организацию 2-х поточной обработки:

1 поток – обработка и стерилизация инструментов, шприцов, игл, резиновых изделий;

2 поток – подготовка и стерилизация белья и перевязочного материала.

Контроль санитарно-гигиенического состояния ЦСО проводится прежде всего микробиологическими методами. При проведении контроля исследуют воздух в ЦСО, делают смывы с предметов медицинского назначения и оборудования, проверяют качество стерилизации.

Основным критерием удовлетворительного санитарного состояния ЦСО является:

- в нестерильной зоне до начала работы в 1 м 3 общее микробное число (ОМЧ) должно быть не более 750, во время работы ОМЧ не должно превышать 1500;

- в стерильной зоне до начала работы в 1 м 3 ОМЧ должно быть не более 500, во время работы ОМЧ не должно превышать 750.

В последние годы отмечают появление и распростра­нение патогенных микроорганизмов, высоко-резистент­ных к действию факторов окружающей среды. Поэтому ужесточаются способы стерилизации и особое значение придают правильному выбору режима стерилизации и тщательному контролю ее качества. При выборе режима стерилизации необходимо учитывать исходную контами­нацию, которую оценивают не только количественно, но и качественно, т. е. определяя устойчивость микроорга­низмов к стерилизующему фактору. Исходная контами­нация изменяется в зависимости от времени года и источ­ника сырья. Определение стерильности готовой продук­ции путем выборочного контроля не дает гарантии стерильности всей партии, поэтому необходимо строго соблюдать режим стерилизации.

Контроль эффективности стерилизации осуществляют несколькими методами (А.А.Воробьёв с соавт., 2002):

1) по показаниям приборов (мановакуумметров, термометров, таймеров) Максимальные термометры, физико-химические и биотесты помещают в определенные точки аппарата.

2) физико-химические тесты (вместе со стерилизуемым материалом в аппарат закладывают ампулы с кристаллами веществ, имеющие определенную точку плавления и меняющие консистенцию или цвет при достижении определенной температуры стерилизуемого материала, например, антипирин - температура плавления 113°С, резор­цин- 110°С, бензойную кислоту- 121°С). В настоящее время для контроля параметров режимов работы паровых и воз­душных стерилизаторов используются специальные бумажные термохимические индикаторы одноразового применения, которые при нужной температуре стерилизации меняют цвет. Бумажные полоски закладываются в разных местах со стерилизуемым материалом и после окончания цикла сверяют изменение окраски индикатора с эталоном. Если индикатор светлее эта­лона, стерилизуемые объекты подлежат повторной стерилизации.

3) биологические тесты (в аппарат помещают флакончики с салфетками или бумажными дисками, пропитанными взвесью термостойкого спорообразующего микроба (Bacillus stearotermophilus для контроля паровых или Bacillus licheniformis для контроля воздушных стерилизаторов) и после стерилизации их инкубируют в МПБ - прозрачный бульон, если споры погибли, не должен мутнеть);

4) молекулярно-генетические методы контроля - гениндикация могут использоваться в случае оценки стерилизации в отношении трудно-культивируемых бактерий (анаэробная группа) или вирусов. С этой целью применяют полимеразную цепную реакцию или обратную гибридизацию ДНК с праймерами соответствующих видов микробов (В.Н.Царёв с соавт., 2002).

Показателями эффективной работы стерилизационной аппаратуры являются: отсутствие роста тест-культуры в сочетании с удовлетворительными результатами физического и химического контроля, либо отсутствие маркерных генов по данным ПЦР и гибридизации ДНК.

Контроль стерильности бактериологическим методом проводят путем прямого посева (погружения) изделий в питательные среды (мелкие или детали разъемных изделий, инструменты - целиком, от шовного или перевязочного материала - отрезанные фрагменты) или (для крупных изделий) методом смывов. Материалом обязательно засевают две среды - тиогликолевую (для роста бактерий) и среду Сабуро (для роста грибов). Посевы на тиогликолевой среде выдерживают при 32°С, на среде Сабуро - при 22°С в течение 7 суток (для изделий после тепловой стерилизации). При отсутствии роста во всех пробирках (флаконах) делают заключение о стерильности изделий.

В продолжение темы:
Культура

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.comПодписи к...

Новые статьи
/
Популярные